v1.16.1

PA - C6B - MAT551 : Systèmes dynamiques

Domaine > Mathématiques.

Descriptif

Les systèmes dynamiques occupent une place déterminante dans les mathématiques comme dans leurs applications : « il est important de résoudre les équations différentielles » selon la devise secrète de Newton. C’était vrai à la fondation de la mécanique céleste et de la physique moderne, c’est encore le cas aujourd’hui avec l’utilisation de modèles dont l’analyse relève souvent de la théorie des systèmes dynamiques (évolution d’une population, états d’un cristal…).

Si l’analyse fonctionnelle et l’analyse numérique étudient l’existence, l’unicité et les procédés d’approximation des solutions de tels modèles, la théorie des systèmes dynamiques cherche à en établir les propriétés à long terme (par exemple : prévisibilité statistique à long terme malgré l'imprévisibilité à moyen terme).

De façon moins évidente pour le néophyte, les systèmes dynamiques apparaissent également en mathématiques pures. Certains problèmes de géométrie et de théorie des nombres se traduisent ainsi élégamment et fructueusement en questions de dynamique.

L’ambition de ce cours est de présenter les notions de bases de la théorie moderne des systèmes dynamiques en lien avec quelques questions de géométrie et de théorie des nombres.

Programme

Théorie ergodique :

  • théorème de récurrence de Poincaré ;
  • notions d’irréductibilité : ergodicité, mélange, Bernoulli ;
  • théorèmes ergodiques  en moyenne et ponctuel.
  • Entropie mesurée ;

Dynamique topologique :

  • théorème de récurrence de Birkhoff ;
  • notions d’irréductibilité : transitivité, mélange, minimalité ;
  • simplexe des mesures invariantes (unique ergodicité) ;
  • entropie topologique.

Théorie des nombres :

  • développement en base entière et en fraction continue ;
  • équirépartition des valeurs de P(n), n décrivant les entiers et P étant un polynôme non constant ayant un coefficient irrationnel ;
  • Principe de correspondance de Furstenberg et théorème de Szemerédi.

Dynamique des homéomorphismes du cercle :

  • nombre de rotation ;
  • théorème et contre-exemple de Denjoy.


Dynamique des automorphismes hyperboliques linéaires du tore :

  • sous-décalages de type finis ;
  • partition de Markov ;
  • entropie.



Niveau requis : Les outils indispensables (en théorie de la mesure notamment) seront brièvement rappelés ou introduits. Une certaine familiarité avec les notions de base de la topologie sera un avantage.

Langue du cours : Français

Credits ECTS : 5

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M1 Mathématiques et Applications - Voie Jacques Hadamard - École Polytechnique

Pour les étudiants du diplôme Diplôme d'ingénieur de l'Ecole polytechnique

Veuillez patienter