Descriptif
Objectives : The purpose of this course is to introduce the students to how statistics is used in practice. By working-out practical examples, students will learn how to select and use appropriate statistical methodologies. We will use data produced in many different areas including among other biology, medicine, toxicology, etc. The course will present both statistical theory and practical analysis on real data sets. The R statistical software and several R packages will be used for implementing methods presented in the course and analyzing real data.
Taking previously the course " Statistics with R" (MAP536) is strongly encouraged.
Website: sia.webpopix.org
Syllabus
1. Statistical tests
• Parametric and non-parametric tests for comparing two groups,
• Power analysis,
• Equivalence testing,
• Multiple comparisons,
• Permutation tests,
2. Regression models
• Linear and nonlinear regression models,
• Confidence and prediction intervals,
• Diagnostic plots,
• Model comparison,
3. Mixed effects models
• The population approach,
• Linear mixed effects models,
• Nonlinear mixed effects models,
• Pharmacokinetics modelling,
4. Mixture models
• k-means clustering,
• Finite mixture of Gaussian distributions,
• The EM algorithm for Gaussian mixtures,
• Supervised classification,
5. Change point analysis
• Detection of a single change point,
• Detection of multiple change points,
6. Image restoration
• Markov random fields
• Gibbs sampler
• Simulated annealing
Langue du cours : Français
Credits ECTS : 4
effectifs minimal / maximal:
/80Diplôme(s) concerné(s)
- Echanges PEI
- Non Diplomant
- M1 Mathématiques et Applications - Voie Jacques Hadamard - École Polytechnique
- Titre d’Ingénieur diplômé de l’École polytechnique
- M1 Innovation, Entreprise, et Société - Voie Innovation technologique
- Artificial Intelligence and Advanced Visual Computing
- M2 Biomechanics
- M1 - Mechanics
- M1 Data AI - Data and Artificial Intelligence
- M2 Biomeca - Biomechanics
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 Data AI - Data and Artificial Intelligence
Le rattrapage est autorisé (Note de rattrapage conservée)Pour les étudiants du diplôme M1 - Mechanics
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 3 ECTS
Pour les étudiants du diplôme Non Diplomant
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 4 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 Mathématiques et Applications - Voie Jacques Hadamard - École Polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)Pour les étudiants du diplôme M1 Innovation, Entreprise, et Société - Voie Innovation technologique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M2 Biomechanics
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 3 ECTS
Pour les étudiants du diplôme M2 Biomeca - Biomechanics
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 3 ECTS