Descriptif
Ce cours présente les fondements mathematiques, ainsi que les aspects pratiques, de la méthode des éléments finis, qui permet notamment de résoudre des équations aux dérivées partielles (EDP) issues de la physique, de la mécanique, de la finance, et de bien d'autres domaines.
Dans sa partie la plus fondamentale, nous commencerons par positionner brièvement la méthode des éléments finis par rapport à d'autres méthodes numériques, avant d'aborder la classification des EDP (elliptique, parabolique, hyperbolique). Dans la suite, nous nous concentrerons sur la discrétisation des EDP elliptiques.
Nous développerons les outils théoriques permettant de résoudre ces EDP, avec en particulier la théorie variationnelle.
Nous passerons ensuite à la discrétisation de ces EDP à l'aide de la méthode dite de Galerkin, qui englobe notamment la méthode des éléments finis (l'analyse de convergence sera réalisée à cette occasion).
Dans la partie la plus concrète du cours, nous proposerons une présentation algorithmique de la méthode, intimement liée à son l'implémentation sur ordinateur. La mise en oeuvre informatique sera expérimentée lors de plusieurs séances de TP, réalisées en Matlab. L'accent sera mis sur la résolution numérique de problèmes "tests".
Des extensions de la méthode des éléments finis, incluant notamment la discrétisation d'EDP paraboliques ou hyperboliques, seront présentées dans le cadre du cours MAP-ANN2.
Remarque: ce cours compte pour 3 ECTs pour l'obtention du M1-Mathématiques Appliquées
Dans sa partie la plus fondamentale, nous commencerons par positionner brièvement la méthode des éléments finis par rapport à d'autres méthodes numériques, avant d'aborder la classification des EDP (elliptique, parabolique, hyperbolique). Dans la suite, nous nous concentrerons sur la discrétisation des EDP elliptiques.
Nous développerons les outils théoriques permettant de résoudre ces EDP, avec en particulier la théorie variationnelle.
Nous passerons ensuite à la discrétisation de ces EDP à l'aide de la méthode dite de Galerkin, qui englobe notamment la méthode des éléments finis (l'analyse de convergence sera réalisée à cette occasion).
Dans la partie la plus concrète du cours, nous proposerons une présentation algorithmique de la méthode, intimement liée à son l'implémentation sur ordinateur. La mise en oeuvre informatique sera expérimentée lors de plusieurs séances de TP, réalisées en Matlab. L'accent sera mis sur la résolution numérique de problèmes "tests".
Des extensions de la méthode des éléments finis, incluant notamment la discrétisation d'EDP paraboliques ou hyperboliques, seront présentées dans le cadre du cours MAP-ANN2.
Remarque: ce cours compte pour 3 ECTs pour l'obtention du M1-Mathématiques Appliquées
Objectifs pédagogiques
Être capable, grâce aux connaissances des fondements mathématiques de la méthode des éléments finis de
- développer les outils théoriques permettant de résoudre les EDP elliptiques à l’aide, en particulier, de la théorie variationnelle ;
- discrétiser ces EDP à l'aide de la méthode dite de Galerkin, qui englobe notamment la méthode des éléments finis, et en analyser la convergence ;
- mettre en œuvre numériquement la méthode des éléments finis sous Matlab.
- développer les outils théoriques permettant de résoudre les EDP elliptiques à l’aide, en particulier, de la théorie variationnelle ;
- discrétiser ces EDP à l'aide de la méthode dite de Galerkin, qui englobe notamment la méthode des éléments finis, et en analyser la convergence ;
- mettre en œuvre numériquement la méthode des éléments finis sous Matlab.
21 heures en présentiel
Diplôme(s) concerné(s)
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M1 MJH - Mathématiques Jacques Hadamard
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 5 ECTS
Programme détaillé
1. Présentation générale et outils mathématiques
2. TD
3. Formulations variationnelles
4. TD
5. Résolution des formulations variationnelles : théorème de Lax-Milgram, fonctionnelle énergie
6. TD
7. Méthode de Galerkin et méthode des éléments finis
8. TP Matlab : mise en oeuvre de la méthode des éléments finis pour le problème de Poisson
9. Méthode des éléments finis de Lagrange et algorithmes
10. TD
11. Méthode des éléments finis : convergence
12. TP Matlab : mise en oeuvre de la méthode des éléments finis pour un problème à coefficients variables
13. Quelques extensions
14. Examen (partie théorique)