Descriptif
Computational logic has been used in a wide range of application in computer science, ranging from the deductive approach to Artificial Intelligence advocated by AI's founder John McCarthy, to proving the absence of bugs in large industrial software such as the 14th metro line in Paris, or checking difficult theorems the as the one of Feit-Thompson in the classification of finite simple groups.
The goal of this course is to explain how logic can be used in order for modeling problems of computational or mathematical nature, and how computers can be used to achieve this. In particular, we will present proof assistants, which allow to formalize human reasoning by interactively constructing proofs, and explain their use to certify the absence of bugs in programs.
This is based on the so-called Curry-Howard correspondence: a program is the same as a proof (or, more precisely, a typed functional program corresponds to a derivation of its type). We will gradually introduce the required notions:
- propositional logic and the constructive variants,
- functional programming, formalized by lambda-calculus,
- typing systems and the Curry-Howard correspondence.
Then in order to reach realistic applications, we will present the proof assistant Agda and dependent logic which underlies it. Time permitting, we will also present various important related notions and techniques such as set theory and proof search.
This course is also about logic in practice: all the TDs will be on computer, using OCaml and then Agda.
Pre-requisites: some basic knowledge of logic, the course INF412 being of course perfect for this, otherwise reading some introductory book on logic over the summer is recommended (see the references on the website).
The website for the course is http://inf551.mimram.fr/
Diplôme(s) concerné(s)
- M1 Cyber - Cybersecurity
- M1 Informatique - Voie Jacques Herbrand - X
- M1 MPRI - Foudations of Computer Science
- Echanges PEI
- M2 Cyber Physical System
- Titre d’Ingénieur diplômé de l’École polytechnique
Parcours de rattachement
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
INF412 recommended
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M1 MPRI - Foudations of Computer Science
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 Informatique - Voie Jacques Herbrand - X
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M2 Cyber Physical System
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Cyber - Cybersecurity
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS