v2.11.0 (5802)

Cours scientifiques - FMA_3S001_EP : Measure and Integration

Domaine > Mathématiques.

Descriptif

Prerequisite: MAA202

MAA301 proposes an introduction to the modern theory of integration. The first part of this course is focused on the construction of the Lebesgue integral, an extension of the Riemann integral to a class of functions much larger than the set of Riemann-integrable functions. With the Lebesgue theory of integration, passing to the limit in integrals of sequences of functions is an easy task which rests on the  verification of a few essentially optimal assumptions. The end of the course offers an introduction to Lebesgue spaces and the Fourier transform, with applications to physics. The abstract theory of integration discussed at the beginning of this course provides the setting

MAA301 is devoted to the modern theory of integration. After first constructing the Lebesgue integral, and explaining how it improves the Riemann integral, a major part of the course will be devoted to discovering the power and ease of use of this tool.

Applications in probability theory will then be briefly described. The course will finally provide an introduction to Lebesgue spaces and the Fourier transform, in order to demonstrate the usefulness of the theory for applications in physics and economics.

used in probability theory and stochastic analysis.

Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique

Vous devez avoir validé l'équation suivante : UE FMA_2S007_EP

Format des notes

Numérique sur 20

Littérale/grade américain

Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique

Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 10)
    L'UE est acquise si Note finale >= 9
    • Crédits ECTS acquis : 4 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Programmes d'échange internationaux

    Veuillez patienter