Descriptif
This course introduces students to the Lagrangian and Hamiltonian mechanics.
Starting from the concepts of Newtonian mechanics, the course extends these
concepts to a more systematic description of the mechanics, adapted to complex
systems. The course will mostly use examples from the dynamics and vibrations of
mechanical systems, with progressively increasing complexity. Examples from
other fields of physics will be also proposed (electromagnetism, astrophysics,
chaos,...)
After a reminder of the classical concepts of point mechanics, the course
extends these concepts to the Lagrangian formalism and to the least action
principle. The Lagrangian formalism will be used to describe the mechanics of
rigid bodies. Lagrangian formalism will then be extended to the Hamiltonian
mechanics which is at the core of quantum physics and other modern theories in
physics. We will also present some extensions of Lagrangian and Hamiltonian
mechanics to other fields of physics.
Upon completion of this course, students master equations and principles in
analytical mechanics. They will be able to discuss the relevance of the chosen
model, as well as derive and solve simple models taken from their environment.
Main concepts covered: Fundamental law of dynamics; kinetic and potential
energy. Linearized equations of motion, dynamics of linear coupled oscillators.
Constraints and generalized coordinates, D'Alembert principle, Hamilton
principle, Euler-Lagrange equations of motion, conservation of energy and
momentum. Rigid body, center of mass, Euler angles, Moment of inertia and
inertia tensor, Euler equation of motion. Equations of Hamilton, conservation
theorem, canonical transformation, Poisson brackets.
Diplôme(s) concerné(s)
Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique
Vous devez avoir validé l'équation suivante : Et UE PHY102 Et UE PHY105
Format des notes
Numérique sur 20Littérale/grade américainPour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 10)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 10)La note obtenue rentre dans le calcul de votre GPA.