Descriptif
The purpose of this course is to present constraint-based methods used in automated reasoning and search problems. Each lecture of approximatively 2h will be followed by 2h of practical work for illustrating the taught concepts and manipulating the associated tools on decision making applications.
The constraint modelling language MiniZinc with different back end constraint solvers (SAT, FD, LP) will be used as a unifying framework and as basis for showing the practical complexity of different solvers on some useful NP-hard problems.
- 29 September Constraint satisfaction problems and the constraint-based modelling language MiniZInc
- TP Puzzle solving in MiniZinc with preliminaries on Python and Jupyter notebooks
- 6 October Boolean satisfiability and SAT solvers
- TP SAT models in MiniZinc and SAT solvers in Python
- 13 October Computational complexity and phase transition in SAT
- TP random k-SAT problems and graph coloring problems in Python and MiniZinc
- 20 October Constraints over finite domains and domain filtering algorithms
- TP mini FD constraint solver in Python
- 3 November Search trees and search heuristics
- TP disjunctive scheduling in MiniZinc-FD
- 10 November Global constraints
- TP Air Traffic Control in MiniZinc-FD
- 17 November Symmetry breaking constraints
- TP Symmetry breaking in MIniZinc-FD
- 24 November Arithmetic constraints
- TP Linear programming for production planning in MIniZinc-LP
- 8 December Constraint-based local search
- TP simulated annealing
- 15 December: final examination
Modalités d'évaluation : TPs + écrit final
Langue du cours : Anglais
Credits ECTS : 4
Diplôme(s) concerné(s)
- Echanges PEI
- Artificial Intelligence and Advanced Visual Computing
- Titre d’Ingénieur diplômé de l’École polytechnique
- M1 MPRI - Foudations of Computer Science
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 4 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 MPRI - Foudations of Computer Science
L'UE est acquise si note finale transposée >=- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.