Descriptif
PHY569B – Plasmas astrophysiques et missions spatiales
Le système solaire constitue un laboratoire idéal pour étudier des processus de physique fondamentale (ex. la turbulence, la reconnexion magnétique, et les chocs), qui sous-tendent des problématiques majeures en physique spatiale, tels que le chauffage la couronne et vent solaires, l'accélération des particules et les émissions radio dans les magnétosphères planétaires (ex. aurores). La raison principale est la disponibilité de données in situ complètes mesurées par diverses missions spatiales qui explorent ces milieux astrophysiques depuis environ un demi-siècle. C’est le cas de l'exploration du vent solaire par Voyager depuis les années 1970 jusqu'aux missions plus récentes, NASA/Parker Solar Probe (lancée en 2018) et l'ESA/Solar Orbiter (lancée en 2020) ; l'exploration de la magnétopshère terrestre par les missions multi-satellites telles que l'ESA / Cluster (2000) et la NASA / MMS (2015) ; l'exploration planétaire: Jupiter par NASA/Galileo, Juno (2016) et ‘‘bientôt’’ ESA/JUICE (qui sera lancée en 2022, pour une insertion en orbite en 2030), Saturne par NASA-ESA/Cassini (1997-2017), Mercure par NASA/Messenger (2011) et ESA-JAXA/BepiColombo (lancée en 2018, insertion en orbite fin 2025). Les progrès réalisés dans le système solaire nous permettent de mieux appréhender des problématiques similaires rencontrées dans d’autres milieux astrophysiques plus lointains, peu ou pas accessibles aux mesures directes. C’est le cas de la formation d'étoiles dans le milieu interstellaire (ISM), l'accélération des rayons cosmiques et la génération de champs magnétiques dans les galaxies et les galaxies inter-amas (ICG), le transport du moment angulaire et l'accrétion de matière autour d'objets compacts (ex. les trous noirs).
Dans ce cours, nous présenterons d'abord quelques grandes questions ouvertes en plasmas astrophysiques et expliquerons comment elles peuvent être abordées en utilisant le système solaire comme laboratoire pour tester les théories existantes. Dans la deuxième partie, nous rappellerons quelques équations de base de la physique des plasmas (descriptions cinétiques et fluides, ex. MHD et ses extensions à petites échelles, la MHD-Hall), avant d’étudier en détail quelques processus universels tels que la turbulence plasma et la reconnexion magnétique. Nous exposerons les théories sous-jacentes de ces processus et expliquerons comment ils peuvent aider à résoudre quelques unes des questions abordées dans la partie introductive du cours, en mettant l’accent sur comment tester les prédictions théoriques directement dans les observations in-situ fournies par les missions spatiales.
Dans la deuxième partie du cours nous décrirons les principaux instruments in-situ embarqués à bords de missions spatiales (ex., magnétomètres, sondes de Langmuir, spectromètres à plasma - électrons et ions). Nous expliquerons leur principe de fonctionnement, les contraintes et limitations inhérentes à l'exploration spatiale (coût, masse, puissance, télémétrie). Nous présenterons également certaines méthodes et techniques de traitement du signal utilisées pour analyser les données des missions spatiales (mono ou multi-satellites). Dans la dernière partie, nous présenterons les grandes tendances actuelles de l'exploration spatiale dédiée à la physique des plasmas (aussi bien dans le vent solaire que dans les magnétosphères planétaires). Nous présenterons les nouvelles questions scientifiques qui ont émergé à la lumière des progrès récents réalisés grâce aux missions en cours d’exploitation, et discuterons des nouveaux concepts de missions spatiales en cours de préparation et les nouveaux défis techniques qu’elles posent.
Langue du cours : Anglais
Diplôme(s) concerné(s)
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Programmes d'échange internationaux
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Non Diplomant
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Physique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS