v2.11.0 (5802)

Cours scientifiques - APM_4ANN2_TA : Analyse et approximation par éléments finis d'EDP

Descriptif

Ce cours fait suite au premier cours sur les éléments finis, ANN201. Il a pour objectif de présenter quelques principes importants avancés de l’approximation numérique des équations aux dérivées partielles par la méthode des éléments finis.

 

Dans une première partie, on étudiera la méthode des éléments finis dite « non conforme », dont les approximations numériques se trouvent en dehors de l’espace fonctionnel de la formulation faible du problème. On introduira le concept important d’une « reconstruction conforme » et présentera l’analyse a priori et a posteriori pour l’équation de Laplace.

 

Une deuxième partie sera consacrée à l’approximation numérique de l’équation de Laplace par les éléments finis dites « hp » où on considère à la fois la diminution de la taille maximale de maillage h et l’augmentation du degré polynomial p.

 

Dans une troisième partie, deux exemples en dehors de problèmes stationnaires linéaires seront considérés : l’équation elliptique non linéaire avec un opérateur de diffusion fortement monotone et continu Lipschitz et l’équation instationnaire parabolique de la chaleur. Analyse a priori pour les éléments finis sera menée.

La mise en œuvre informatique fera le contenu de deux séances de travaux pratiques sur ordinateur.

Objectifs pédagogiques

Être capable :

- de manipuler et analyser les méthodes des éléments finis avancées de type « non conforme » ou « hp » ;

- de maîtriser les grands principes des analyses a priori et a posteriori ;

- d’appliquer la méthode des éléments finis à des problèmes non linéaires et instationnaires.

21 heures en présentiel

Diplôme(s) concerné(s)

Parcours de rattachement

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M1 MJH - Mathématiques Jacques Hadamard

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 2 ECTS

Programme détaillé

  1. CM, TD :

La méthode des éléments finis « non conforme »

  1. CM, TD :

Reconstruction conforme

3a. CM :

Estimations d’erreur a posteriori

3b. TP sur ordinateur :

La méthode des éléments finis « non conforme », reconstruction conforme, estimations d’erreur a posteriori

  1. CM, TD :

Approximation « hp »

5a. CM : L’équation elliptique non linéaire, théorème de point fixe de Banach

5b. TP sur ordinateur :

La méthode des éléments finis pour l’équation elliptique non linéaire

  1. CM, TD :

La méthode des éléments finis pour l’équation instationnaire parabolique de la chaleur

7a. Contrôle :

Examen (2h)

7b. CM :

1h de cours « ouverture »

Mots clés

méthode des éléments finis, approximation non conforme, approximation hp, estimation a priori, estimation a posteriori, problème non linéaire, problème instationnaire

Méthodes pédagogiques

Cours magistraux, travaux dirigés et projets de programmation
Veuillez patienter