Descriptif
Random phenomena are modelled using modern probability theory, defined in the 1930s by Kolmogorov using measure theory as a cornerstone. This course aims to provide a deep understanding of this theory. It is indeed an asset to forge intuition, to understand the objects involved and to mobilize them in an applied or theoretical framework.
This course is designed for an audience with a variety of interests: it may be of interest to students wishing to deepen their study of probability theory on the one hand, and on the other hand it may be of interest to students who intend to use it in business applications (a good understanding of probability theory is essential in order to be able to orient oneself in the world of applications and to innovate there). Each week is devoted to a theme of measure theory, with applications related to probability, involving discussions around exercises. The last session is devoted to oral presentations.
The evaluation is based on a 30-minute oral presentation by pairs of a research or overview article on a model, which is attended by all students. The objective is both individual (to learn to read a primary source and to present its content orally in English in a given time) and collective (to see a variety of models and applications in probability).
The course is delivered in english.
effectifs minimal / maximal:
/20Diplôme(s) concerné(s)
- M1 MJH - Mathématiques Jacques Hadamard
- Programmes d'échange internationaux
- Titre d’Ingénieur diplômé de l’École polytechnique
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Programmes d'échange internationaux
Vos modalités d'acquisition :
Exposé oral.
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Vos modalités d'acquisition :
Exposé oral.
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 MJH - Mathématiques Jacques Hadamard
Vos modalités d'acquisition :
Exposé oral.
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 5 ECTS