Descriptif
Les simulations numériques sont de plus en plus utilisées pour la modélisation de systèmes physiques, chimiques ou biologiques, mais également des systèmes économiques ou financiers. Elles permettent de limiter les risques et d'éviter le coût d'expériences réelles (essais de crash de voitures par exemple), ou d'effectuer des prédictions sur les comportements de ces systèmes (modèles épidémiologiques par exemple). Elles peuvent intervenir à différentes étapes d'un projet industriel ou économique : lors de la conception d'un avant-projet, lors de l'optimisation du projet final, et lors de la validation du projet abouti. Il se pose alors la question de la confiance que l'on peut avoir en les prédictions et les décisions issues de telles simulations. En effet de nombreuses sources d'incertitudes existent : incertitudes sur certains paramètres physiques, sur les conditions environnementales, sur les erreurs de fabrication, sur les phénomènes pris en compte ou négligés et leur modélisation.
L'objectif de ce cours est de présenter des méthodes mathématiques (essentiellement probabilistes et statistiques) permettant de modéliser, de caractériser et d'analyser les incertitudes dans des simulations numériques.
Objectifs pédagogiques
Développer et mettre en oeuvre une démarche de maitrise des incertitudes pour un système réel ou numérique:
- identifier et modéliser les sources d'incertitude,
- propager les incertitudes jusqu'aux quantités d'intérêt,
- analyser qualititativement et quantitativement la sensibilité des quantités d'intérêt vis-a-vis des différentes sources d'incertitudes.
effectifs minimal / maximal:
/75Diplôme(s) concerné(s)
Parcours de rattachement
Objectifs de développement durable
ODD 9 Industrie, Innovation et Infrastructure.Pour les étudiants du diplôme Programmes d'échange internationaux
Pas de pré-requis à part un cours d'introduction aux probabilités et statistique. Avoir suivi des cours plus avancés en probabilités et statistique peut aider n'est pas obligatoire.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Pas de pré-requis à part MAP361. Avoir suivi des cours plus avancés en probabilités et statistique (MAP432 et/ou MAP433) peut aider n'est pas obligatoire.
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Programmes d'échange internationaux
Vos modalités d'acquisition :
L'évaluation comprend une note d'examen et une note d'un projet de simulation. La note finale sera la moyenne des deux notes.
L'examen sera un devoir sur table de trois heures (avec polycopié autorisé). On attend un notebook jupyter pour le projet à faire à la maison. L'examen est individuel. Le projet peut être réalisé en binôme.
Le rattrapage est autorisé (Note de rattrapage conservée)
- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Vos modalités d'acquisition :
L'évaluation comprend une note d'examen et une note d'un projet de simulation. La note finale sera la moyenne des deux notes.
L'examen sera un devoir sur table de trois heures (avec polycopié autorisé). On attend un notebook jupyter pour le projet à faire à la maison. L'examen est individuel. Le projet peut être réalisé en binôme.
Possibilite de rattrapage sous forme d'un oral (sans polycopié).
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
0) introduction
"uncertainy quantification"
sources d'incertitudes
propagation d'incertitudes
métamodélisation ou construction de surfaces de réponses
analyse de sensibilité
optimisation robuste
problèmes inverses
1) propagation d'incertitudes
modélisation probabiliste des sources d'incertitudes
identification des lois : méthodes paramétriques, méthodes non-paramétriques à noyaux, entropie
modélisation de la propagation des incertitudes; méthodes quadratiques
2) échantillonnage et quadrature pour l'évaluation des premiers moments
comparaisons méthodes de quadrature versus Monte Carlo
quasi Monte Carlo
réduction de variance
méthodes MCMC pour l'échantillonnage en grande dimension
3) analyse de risque
méthodes fiabilistes
simulation d'événements rares par Monte Carlo
estimation de quantiles; quantile de Wilks
4) métamodélisation et régression linéaire généralisée
ajustement d'un métamodle par moindres carrés
évaluation des résidus et validation du métamodle
5) métamodélisation par polynômes de chaos
polynômes de Wiener
polynômes de chaos généralisés
estimation des coefficients des polynômes et validation du métamodle
6) régression par processus gaussiens
krigeage simple
krigeage universel
sélection des hyper-paramtres
optimisation robuste
7) analyse de sensibilité
analyse de la variance
indices de Sobol
calcul et estimation des indices de Sobol
8) problmes inverses
résolution de problmes inverses mal posés
régularisation et approche bayésienne
consistance et normalité asymptotique du maximum a posteriori
échantillonnage des distributions a posteriori