v2.11.0 (5648)

Programme d'approfondissement - ECO_51658_EP : Econométrie des Séries Temporelles

Domaine > Economie.

Descriptif

The objective of this course is to present the fundamental concepts of time series analysis. Completion of this
course will enable students to move on to more advanced courses on time series modeling. The lectures will present the main concepts of linear time series and the methods to fit a model on the data.

Brockwell, P.J. and R.A. Davis (1991) Time Series: Theory and Methods. 2nd Edition, Springer
Brockwell, P.J. and R.A. Davis (2002) Introduction to Time Series and Forecasting, Springer
Gouriéroux, C. and A. Monfort (1997) Time Series and Dynamic Models, Cambridge University Press,
Cambridge
Hamilton, J. D. (1994) Time Series Analysis, Princeton University Press

Objectifs pédagogiques

At the end of the course, the student should be able to
Compute and interpret a correlogram, discuss the concepts of stationarity and white noise
Derive the probabilistic and statistical properties of linear time series models
Choose an appropriate ARIMA model for a given set of data and use it for forecasting
Handle multivariate time series and discuss the notions of cointegration and causality

24 heures en présentiel

effectifs minimal / maximal:

/52

Diplôme(s) concerné(s)

Parcours de rattachement

Pour les étudiants du diplôme M1 MiE - Master en Economie

Some basics in algebra (complex numbers, roots of polynomials), probability and statistics (estimation and tests)

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique

Vos modalités d'acquisition :

● Sans document

final written exam

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme M1 MiE - Master en Economie

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si Note finale >= 10
      • Crédits ECTS acquis : 3 ECTS

      Pour les étudiants du diplôme Programmes d'échange internationaux

      Vos modalités d'acquisition :

      written closed book final exam 

      L'UE est acquise si Note finale >= 10

        Programme détaillé

        Examples of time series. Aims of Time Series analysis.
        1. Generalities on univariate second-order stationary processes - Autocovariances, partial autocorrelations
        - Innovations - Wold theorem - Asymptotic properties of empirical moments
        2. AR, MA, ARMA, SARIMA processes - Canonical representation - Identification, estimation, tests and
        forecasting - Model building
        3. Nonstationary models, Unit root tests
        4. Stationary vector processes - Multivariate AR models - Statistical Inference - Causality tests, impulseresponse
        analysis. Cointegration

        Mots clés

        Data, Economics
        Veuillez patienter