Descriptif
Data Visualization
The visual representation of data takes full advantage of the human visual system in terms of perception and cognition. Elaborate patterns, interesting data points and outliers can easily be identified, individual data points and sets can efficiently be compared and contrasted, provided that the data is properly represented. Visualization enables users to explore their data in an interactive manner, to get overviews and drill down to detailed views, following processes that yield insights that would be difficult to obtain using fully automated data analysis techniques from fields such as, e.g., data mining or machine learning. They serve different purposes, but can complement one another very effectively. Visualization can for instance help formulate hypotheses, that can then be tested using statistical tests or other elaborate data analysis techniques. Beyond these exploratory aspects, data visualization can also support decision making, and plays a central role in the communication of findings to a wide range of audiences.
This course first gives an overview of the field of data visualization. It then discusses fundamental principles of human visual perception, focusing on how they help inform the design of visualizations. The following sessions focus on visualization techniques for specific data structures, and discuss them in depth from both design and implementation perspectives, including: multi-variate data, hierarchical structures, networks, time-series, statistical data and geographical data.
All exercises are based on Web technologies, including the D3 software library (Data-Driven Documents) and the Vega-lite interactive graphics grammar. While positioned at different levels of abstraction, both enable developers to create a wide range of interactive, Web-based visualizations that run on a variety of platforms, ranging from desktop workstations to mobile devices.
Requirements: some prior experience with Web-based development (Javascript) is a plus, but not a hard requirement.
More information, including covid-19 organization at https://www.enseignement.polytechnique.fr/informatique/INF552/
Course material: http://www.enseignement.polytechnique.fr/informatique/INF552/
Language: The course material is in English. Lectures can be taught either in French or in English, at the students' convenience.
Credits ECTS : 4
Diplôme(s) concerné(s)
- Internet of Things : Innovation and Management Program (IoT)
- Echanges PEI
- M2 IGD - Interaction, Graphic and Design
- M2 Data AI - Data and Artificial Intelligence
- Titre d’Ingénieur diplômé de l’École polytechnique
- M1 Data AI - Data and Artificial Intelligence
- M1 HPDA - High Performance Data Analytics
- Non Diplomant
- M1 Innovation, Entreprise, et Société - Voie Innovation technologique
- M2 HPDA - High Performance Data Analytics
- M1 MPRI - Foudations of Computer Science
- M2 - Energy Infrastructures Management
- Master 2 Énergie
Parcours de rattachement
- M2 Data AI - Data and Artificial Intelligence - Master 2A
- M2 IGD - Interaction, Graphic and Design - Master 2A
- MScT IOT - Semestre 3
- M1 Data AI - Data and Artificial Intelligence - Master 1A
- M1 HPDA - High Performance Data Analytics - Master 1A
- M2 HPDA - High Performance Data Analytics - Master 2A
- M1 MPRI - Foudations of Computer Science - Master 1A
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M2 IGD - Interaction, Graphic and Design
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Internet of Things : Innovation and Management Program (IoT)
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 4 ECTS
Pour les étudiants du diplôme M1 Data AI - Data and Artificial Intelligence
Vos modalités d'acquisition :
2.5 ECTS si jamais l'élève fait la version "courte" soit 24h du cours .
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M2 Data AI - Data and Artificial Intelligence
Vos modalités d'acquisition :
2.5 ECTS si jamais l'élève fait la version "courte" soit 24h du cours .
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 HPDA - High Performance Data Analytics
Le rattrapage est autorisé (Note de rattrapage conservée)Pour les étudiants du diplôme Master 2 Énergie
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M2 - Energy Infrastructures Management
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M2 HPDA - High Performance Data Analytics
Le rattrapage est autorisé (Note de rattrapage conservée)Pour les étudiants du diplôme M1 MPRI - Foudations of Computer Science
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Innovation, Entreprise, et Société - Voie Innovation technologique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Non Diplomant
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Programme détaillé
Course material: http://www.enseignement.polytechnique.fr/informatique/INF552/