Descriptif
Reinforcement learning aims at finding at each step of a process the best action to take in order to minimize some regret function. This course will introduce the general notions of reinforcement learning and will present several online algorithms that can be used in real-time to take actions. The specificity and the performance of the different algorithms will be discussed in detail.
effectifs minimal / maximal:
/27Diplôme(s) concerné(s)
- Echanges PEI
- Artificial Intelligence and Advanced Visual Computing
- M2 Data AI - Data and Artificial Intelligence
- Titre d’Ingénieur diplômé de l’École polytechnique
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M2 Data AI - Data and Artificial Intelligence
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 2.5 ECTS