Descriptif
This course provides an overview of the classical differential geometry of curves and surfaces.
More precisely, we will study the local theory of (regular, parametrized) curves (curvature, torsion), regular surfaces, and the local theory (first and second fundamental forms) and intrinsic geometry (Theorema Egregium and Gauss-Bonnet theorem) of the latter.
Weekly exercise sessions form an integral part of the course.
The instructor will provide lecture notes covering the material seen in class.
Prerequisites: some basic linear algebra, as seen is any undergraduate class (such as MAA101 and 201), and familiarity with multivariable calculus (differential of functions from ℝ^n to ℝ^2, as seen for example in MAA202). The most important notions will be briefly reviewed during the first lecture.
Objectifs pédagogiques
This course provides an overview of the classical differential geometry of curves and surfaces.
Diplôme(s) concerné(s)
Parcours de rattachement
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Physique
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Économie
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Économie - Mineure d'Informatique
- Bachelor en Sciences - S6 - Double specialite Mathematiques et Informatique
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Économie - Mineure Chimie (BS-S6-ME)
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Économie - Mineure Biologie (BS-S6-ME)
- Bachelor en Sciences - S6 - Double spécialité Mathématiques et Informatique - Mineure en Biologie
- Bachelor en Sciences - S6 - Double spécialité Mathématiques et Informatique - Mineure en Chimie
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Physique - Mineure Chimie
- Bachelor en sciences - S6 - Double spécialité Mathématiques et Physique - Mineure Biologie
Pour les étudiants du diplôme Programmes d'échange internationaux
Some basic linear algebra, as seen is any undergraduate class (such as MAA101 and 201), and familiarity with multivariable calculus (differential of functions from ℝ^n to ℝ^2, as seen for example in MAA202).
Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique
Vous devez avoir validé l'équation suivante : UE FMA_2F002_EP
Some basic linear algebra, as seen is any undergraduate class (such as MAA101 and 201), and familiarity with multivariable calculus (differential of functions from ℝ^n to ℝ^2, as seen for example in MAA202).
Règle d'exclusion : UE APM_3S008_EP
Format des notes
Numérique sur 20Littérale/grade américainPour les étudiants du diplôme Programmes d'échange internationaux
Vos modalités d'acquisition :
The assessment will consist of two parts:
- A continuous assessment (coursework) based on short tests and/or homework assignments
- A 2 hours long written final exam (closed book).
The final numerical grade will be the the arithmetic mean of the grade of the coursework and that of the final exam, all of which will be on a scale from 0 to 20.
It will be converted to the official final letter grade according to a table published by the instructor at the beginning of the course.
Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique
Vos modalités d'acquisition :
The assessment will consist of two parts:
- A continuous assessment (coursework) based on short tests and/or homework assignments
- A 2 hours long written final exam (closed book).
The final numerical grade will be the the arithmetic mean of the grade of the coursework and that of the final exam, all of which will be on a scale from 0 to 20.
It will be converted to the official final letter grade according to a table published by the instructor at the beginning of the course.
Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 11)- Crédits ECTS acquis : 4 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
- parametrized curves: length, curvature, torsion
- Frenet frames, Frenet formulas, fundamental theorem of space curves
- global results on curves
- surfaces in three-dimensional space, calculus on surfaces
- first fundamental form, isometries
- Gauss map, Weingarten map
- second fundamental form, curvatures, classification of points
- Gauss's Theorema Egregium, Codazzi-Mainardi equations
- geodesics theory and applications
- Gauss-Bonnet Theorem
Mots clés
Differential geometry, curves, surfaces, curvatureMéthodes pédagogiques
Blackboard classes, tutorialsSupport pédagogique multimédia