v2.11.0 (5790)

Cours scientifiques - MAA102 : Introduction to Analysis

Domaine > Mathématiques.

Descriptif

Analysis (MAA 102) is an introductory-level mathematical analysis course which provides a well-balanced approach between foundational notions and calculus. It is designed to equip students with the fundamental analytical tools required to pursue studies in Mathematics and, more generally, in any scientific field (Physics, Mechanics, Economics, Engineering, Computer Science, etc).

 

Objectifs pédagogiques

The objective is to present fundamental notions and results regarding the set of real and complex numbers, real and complex-valued sequences, real and complex-valued infinite series and functions of one real variable. 

With respect to the expected initial knowledge of the students, the Course follows a more systematic approach, providing a few insights on the roots of analysis and proving all important results. Though in the continuity of the students' previous studies in Mathematics, this course may also be a turning point towards more rigor and proofs.

4 heures en présentiel

4 heures de travail personnel estimé pour l’étudiant.

effectifs minimal / maximal:

1/200

Diplôme(s) concerné(s)

Format des notes

Numérique sur 20

Littérale/grade américain

Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique

Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 9)
    L'UE est acquise si Note finale >= 9
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Echanges PEI

    Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 9)
      L'UE est acquise si Note finale >= 9
      • Crédits ECTS acquis : 5 ECTS

      La note obtenue rentre dans le calcul de votre GPA.

      Programme détaillé

      Week I - The Set of Real Numbers

      • The construction of the set of Natural numbers 
      • The construction of the set of Rational numbers
      • The construction of the set of Real numbers 
      • Upper bound and least upper bound properties 

      Week II - The Set of Complex Numbers

      • Intervals 
      • The integer part of a real number 
      • The n-th root of a real number  
      • The set of complex numbers 
      • Modulus and argument of a complex number 
      • The n-th root of a complex number

      Week III - Sequences

      • Limite of sequence
      • Comparison tests for sequences
      • Monotone sequences

      Week IV - Sequences

      • Infinite limits
      • Adjacent sequence 
      • Subsequences and accumulation points  
      • The Bolzano-Weierstrass Theorem  

      Week V - Infinite Series

      • Finite and Infinite series 
      • Convergence Tests 

      Week VI - Infinite Series

      • Convergence tests 
      • Further tests for convergence 
      • Absolute convergence of series  
      • Alternative series

      Week VII - MIDTERM

      Week VIII - Continuity of a Function of One Variable

      • Subsets of \bf R
      • Limits of functions
      • Continuity of a function at a point

      Week IX - Continuity of a Function of One Variable

      • Continuous functions
      • Intermediate Value Theorem
      • Uniformly continuous function

      Week X - Global Properties of Functions

      • Global properties of continuous functions
      • Monotone functions
      • Periodic functions

      Week XI - Differentiability of a Function of One Variable

      • Differentiable functions
      • The Inverse Function Theorem
      • Higher order derivatives   

      Week XII - Variations of Functions

      • Extrema of functions
      • Rolle's Theorem and the Mean Value Theorem
      • Convex functions 

      Week XIII - Classical Functions

      • Trigonometric functions
      • Exponential and logarithm
      • Hyperbolic functions

      Week XIV - Taylor Expansions

      • Taylor-Lagrange's Theorem
      • Taylor expansions of classical functions and Taylor series
      • Manipulating Taylor expansions
      • Applications of Taylor expansions 
      Veuillez patienter