v2.11.0 (5802)

Cours scientifiques - EP-MAP-661 : Théorème Limites et Applications

Domaine > Mathématiques appliquées.

Descriptif

La première partie du cours est consacrée à l’étude de la notion de convergence en loi, d'abord dans ℝ^n, puis dans un cadre assez général où les objets aléatoires considérés prennent leurs valeurs dans un espace métrique complet et séparable. On démontre en particulier le théorème de Prokhorov qui caractérise les familles de mesures de probabilité relativement compactes pour la topologie de la convergence en loi.

Dans un second temps, cette théorie est appliquée à l'étude de la convergence en loi dans l'espace des fonctions continues à valeurs réelles, puis dans l'espace des fonctions càdlàg à valeurs réelles. On établit en particulier le théorème de Donsker, selon lequel une marche aléatoire à pas indépendants et de même loi converge après renormalisation vers un mouvement brownien.
La dernière partie du cours sera consacrée à l'étude des mesures aléatoires de Poisson.

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M2 MdA - Mathématiques de l'Aléatoire

L'UE est acquise si Note finale >= 10

    Pour les étudiants du diplôme M2 Mathématiques pour les Sciences du Vivant

    L'UE est acquise si Note finale >= 10
    • Crédits ECTS acquis : 6 ECTS
    Veuillez patienter