v2.11.0 (5725)

Cours scientifiques - APM_51655_EP : Théorie des probabilités et processus stochastiques

Domaine > Mathématiques appliquées.

Descriptif

The goal of this course is to present the two main modern tools in probability and essential objects from a theoretical perspective as well as in applications: martingales and Markov chains. Both pertain to the theory of stochastic processes in discrete time, namely sequences of random variables which are not independent, but rather in which the law at a given time depends on the past.

Martingale theory constitutes a fantastic tool that for example allows to describe the law of the time and position of the first entry of such a process in a given subset as well as to establish almost sure convergence as time tends to infinity.

Markov chains appear very naturally in the modelisation of various phenomena for it describes the evolution of a stochastic process in which at a given time, the law of the next position in fact only depends on the present position and not the whole past trajectory.

In both theories, we will be especially interested in the long time behaviour of the process.

56 heures en présentiel

Diplôme(s) concerné(s)

Pour les étudiants du diplôme M1 APPMS - Mathématiques Appliquées et Statistiques

This course is meant to be a second course on probability theory. Familiarity with basic probability such as random variables, their law and
expectation, independence, Lp spaces, different notion of convergences, Law of Large Numbers & Central Limit Theorem will be assumed. Some familiarity with Python for numerical applications can be useful.

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M1 APPMS - Mathématiques Appliquées et Statistiques

Vos modalités d'acquisition :

Examen : un examen de mi-parcours et un examen final, tous deux écrits, sans aucun document autorisé. La note finale est le maximum entre la note de l'examen final et la moyenne des notes de l'examen intermédiaire et de l'examen final.

Validation du module : le cours sera considéré comme validé si la note finale est supérieure à 10/20.

Rattrapage : en fonction du nombre d'étudiants concernés, soit un examen écrit dans les mêmes conditions que ci-dessus soit un court examen oral individuel sera organisé.

 

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 6 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Veuillez patienter