Descriptif
Le cours magistral est accompagné de quelques séances de travaux dirigés et de travaux pratiques, durant lesquelles les étudiants mettent en oeuvre sur un cas concret quelques méthodes numériques étudiées.
Ce cours est fait en commun avec le M2 Optimization de l'Université Paris-Saclay :
- les 18 premières heures du cours constituent la partie ENSTA du cours,
- les 12 heures restantes sont des compléments apportés dans le cadre du M2,
- l'examen commun a lieu lors de la dernière séance.
Objectifs pédagogiques
Diplôme(s) concerné(s)
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M2 OPT - Optimisation
L'UE est acquise si Note finale >= 10- Crédits ECTS acquis : 5 ECTS
Programme détaillé
1. Prog1 - Introduction: examples, differential calculus in functional spaces.
2. Prog1 - Pontryagin's principle (PMP).
3. Prog 1 - Applications of the PMP.
4. Prog 1 - Minimal time function, optimal synthesis (linear case).
5. Prog 1 - Shooting methods.
6. Prog 1 - Minimal time function, optimal synthesis (nonlinear case).
7. Prog 2 - State constraints (PMP). Beginning of the Master part of the course.
8. Prog 1 - Practical class (gradient methods for optimal control problems) - End of the ENSTA part of the course.
9. Prog 2 - State constraints and shooting.
10. Prog 2 - HJB approach for optimal control. Value function, dynamic programming principle.
11. Prog 2 - Singular arcs.
12. Prog 2 - HJB equations, verification theorem, viscosity solutions, numerical analysis.
13. Written exam.