Descriptif
INF563 — Introduction to Information Theory
Coordinator : Jean-Pierre Tillich (jean-pierre.tillich@inria.fr)
Objectives :
Information theory deals with finding the fundamental limits for compressing a signal, storing data or communicating information reliably over a noisy channel for instance. It turns out that all these limits can be expressed in terms of a single quantity which is entropy. The foundations of this domain were laid by Shannon who quantified in a very elegant way these limits.
We will cover during this course his major results and will also give the modern answers to this kind of issue that give very effective schemes for compressing or protecting data against noise. Now this theory has also found applications in many other areas such as cryptography, biology, quantum computing, linguistics, plagiarism detection or pattern recognition. We will cover some of those other applications during the course.
Content :
The course is divided into nine lectures and nine exercise or lab sessions. These cover the main algorithmical and mathematical concepts involved in information theory. The topics covered include:
- Entropy, typical sequences
- Memoryless source coding
- Memoryless source coding, Huffman code, Shannon-Fano-Elias code, Shannon code and arithmetic coding
- adaptative Huffman coding, universal coding of a source
- Stationnary source, typical sequences, AEP
- Channel coding, capacity, Shannon theorem
- Linear codes, Hamming and Reed-Solomon codes, decoding, concatenated codes
- Polar codes
-
Applications of Information Theory to other domains.
Suggested readings:
T. Cover, J. Thomas, "Elements of Information Theory". Wiley Series in Telecommunications, 1991.
Language :
The course material is in English. Lectures can be taught either in French or in English, at the students' convenience.
Evaluation :
The course is validated by an oral examination.
Prerequisites :
-
Some basic background in statistics or probability theory is desirable but not mandatory.
-
in computer science: some knowledge of algorithms and programming such as INF411 or INF421.
Diplôme(s) concerné(s)
- M1 Cyber - Cybersecurity
- M1 MPRI - Foudations of Computer Science
- M1 Informatique - Voie Jacques Herbrand - X
- MScT-Cybersecurity : Threats and Defenses
- M1 Physics
- M1 Physics by Research
- Non Diplomant
- Titre d’Ingénieur diplômé de l’École polytechnique
- Echanges PEI
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M1 Physics by Research
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 Physics
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Cyber - Cybersecurity
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 3 ECTS
Pour les étudiants du diplôme MScT-Cybersecurity : Threats and Defenses
Le rattrapage est autorisé (Note de rattrapage conservée)Pour les étudiants du diplôme M1 MPRI - Foudations of Computer Science
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Non Diplomant
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Informatique - Voie Jacques Herbrand - X
Le rattrapage est autorisé (Note de rattrapage conservée)La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.