v2.10.0 (5114)

PA - C8 - MAP531 : Statistics with R

Domaine > Mathématiques appliquées.

Descriptif

Objectives

Statistics is the essence behind data science. It is clearly essential to have a deep understanding of the theory and the methods. This is a prerequisite before following a machine learning course.

 

Syllabus

  • Elements of decision theory: risk, loss, decision rules
  • Optimal decisions, unbiasedness, equivariance, sufficient statistics
  • Pointwise estimator: Z-estimator, M-estimator
  • Asymptotical results: law of large numbers, central limit theorem, consistency, asymptotic normality
  • Maximum likelihood, Fisher information, Kullback Leibler, asymptotic optimality
  • Tests: definitions, the Neyman-Pearson lemma, Uniformly Most Powerful test, p-value

Langue du cours : Anglais

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme Diplôme d'ingénieur de l'Ecole polytechnique

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    Pour les étudiants du diplôme Echanges PEI

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si note finale transposée >= C
      • Crédits ECTS acquis : 5 ECTS

      Pour les étudiants du diplôme MScT-Data Science for Business

      Le rattrapage est autorisé (Note de rattrapage conservée)
        L'UE est acquise si note finale transposée >= C
        • Crédits ECTS acquis : 4 ECTS

        La note obtenue rentre dans le calcul de votre GPA.

        Veuillez patienter