Descriptif
Ce cours est une introduction à la topologie algébrique, et est destiné aux élèves du PA de mathématiques, ainsi qu’aux élèves des PA de MAP et INFO intéressés par les DataScience, ou l’informatique théorique, et qui souhaitent acquérir un bagage mathématique fort. Ce cours est une bonne préparation (sans être un prérequis) et complément au cours INF 556 (Topological Data Analysis), les outils introduits ayant trouvé des applications récents à l’étude des nuages de points.
Le cours se concentrera principalement sur l'étude des invariants des espaces topologiques, en particulier l'homologie. Après quelques rappels de topologie et l'étude de la notion d'équivalence d'homotopie, on introduit l'homologie simpliciale et singulière ainsi que leurs propriétés principales. Le groupe fondamental sera également introduit. La fin du cours sera consacrée à des idées générales d'algèbre homologique offrant des applications différentes de la partie principale du cours à l'étude d'autres objets mathématiques. Tout au long du cours, les idées et notions de la théorie des catégories seront introduites et utilisées.
Bibliographie
Glenn Bredon, Topology and Geometry, Graduate Texts in Mathematics, 139. Springer-Verlag, New York,
1997
Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002
Chuck Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38.
Cambridge University Press, Cambridge, 1994
Langue du cours : Français
Credits ECTS : 5
effectifs minimal / maximal:
/30Diplôme(s) concerné(s)
- M1 Data AI - Data and Artificial Intelligence
- M1 MPRI - Foudations of Computer Science
- Echanges PEI
- M1 Mathématiques et Applications - Voie Jacques Hadamard - École Polytechnique
- M1 Mathematiques Jacques Hadamard
- Titre d’Ingénieur diplômé de l’École polytechnique
Parcours de rattachement
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Vous devez avoir validé l'équation suivante : UE INF556
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M1 MPRI - Foudations of Computer Science
Pour les étudiants du diplôme M1 Data AI - Data and Artificial Intelligence
Le rattrapage est autorisé (Max entre les deux notes)Pour les étudiants du diplôme M1 Mathematiques Jacques Hadamard
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 Mathématiques et Applications - Voie Jacques Hadamard - École Polytechnique
Le rattrapage est autorisé (Max entre les deux notes)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Echanges PEI
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.