v2.11.0 (5725)

Cours scientifiques - MEC_53456_EP : États de la mer, propagation des vagues et énergie des vagues océaniques

Domaine > Mécanique.

Descriptif

Description
The course is divided in three main parts: (1) Characterizing waves and describing the important
physical processes governing oceanic and nearshore wave propagation, (2) Numerical modeling of
wave propagation, and (3) Wave-structure interactions. The course is organized in 9 sessions comprised of lectures and project development.

Objectifs pédagogiques

The objective of this course is to introduce students to sea states and waves, as well as the dominant
physical processes controlling wave propagation and their interaction with structures. In class, we
will use linear wave theory to describe basic wave characteristics, before introducing more nonlinear
wave theories. Then, we will introduce the different families of wave propagation models that exist
to familiarize students with the different types of mathematical and numerical models, including
their advantages and disadvantages, and their range of applicability. Finally, the last objective of the
class is to investigate wave-structure interactions, in particular in the context of renewable energy,
focusing on how to define design criteria for offshore structures, including using both academic and
industrial numerical modeling approaches.

At the end of the course, a student should be able to:

⇒ describe wave characteristics using deterministic and spectral approaches,

⇒ understand the different physical processes governing wave transformation at a range of spatial and temporal scales, from wind generation to interactions with the bottom,

⇒ evaluate the appropriate numerical modeling approaches to use for different applications,

⇒ understand the physical processes governing wave-body interactions,

⇒ estimate the absorbed wave energy of a wave energy converter, and

⇒ evaluate the application of industrial and academic numerical modeling approaches to simulate
wave-structure interactions.

36 heures en présentiel

Diplôme(s) concerné(s)

Parcours de rattachement

Objectifs de développement durable

ODD 7 Energie propre et d’un coût abordable, ODD14 Vie aquatique.

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme MScT-Energy Environment : Science Technology & Management

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 4 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme M2 WAPE - Eau, Pollution de l'Air et Energies

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si Note finale >= 10
      • Crédits ECTS acquis : 3 ECTS

      La note obtenue rentre dans le calcul de votre GPA.

      Programme détaillé

      1. Characterizing ocean waves and sea states (23/09/2022, M. Yates)

      • Introduction to class
      • Description of waves
      • Sea state characterization (wave-by-wave, spectral analysis)
      • Wave observation techniques and databases

      Project: Description of class project and site selection

      2. Linear wave theory (30/09/2022, M. Yates)
      • Linearization of the water wave problem
      • Dispersion relation
      • Wave kinematics and approximations in shallow and deep water
      • Nonlinear wave theories (Stokes, Cnoidal, stream function)

      Project: Using wave buoy measurements or simulation results (ResourceCode) at the study
      sites to generate scatter diagrams and to characterize wave variability.

      3. Nearshore wave propagation (07/10/2022, M. Yates)

      • Wave energy flux conservation
      • Bathymetric refraction
      • Wave shoaling
      Project: Calculating mean and extreme wave conditions at the study sites and collecting
      bathymetric data.

      4. Coastal hydrodynamics (14/10/2022, M. Yates)
      • Characterization of wave breaking
      • Wave breaking impacts (undertow, setup, longshore currents)
      • Surf zone circulation (rip currents, eddies)
      • Infragravity waves and impacts
      • Wave-current interactions
      Class presentations: Students work in groups to present subjects selected during class 2

      5. Numerical modeling of wave propagation 1 (21/10/2022, J. Harris)
      • Review of important physical processes to model
      • Differentiating phase-averaged and phase-resolving models
      • Presentation of phase-averaged (spectral) models
      Project: Introduction to wave model to be used in the project

      6. Numerical modeling of wave propagation 2 (28/10/2022, J. Harris)
      • Solving the Navier-Stokes equations
      • Fully nonlinear potential flow models
      • Boussinesq-type models
      • Mild-slope equations
      Project: Wave transformation from deep to shallow water at the study sites.

      7. Dynamics of a body in waves (18/11/2022, J. Harris)
      • Diffraction of a monopile
      • Nondimensional numbers (Re, F r, KC) and similitude
      • Derivation of Morison equation
      • Experimental approaches
      Project: Wave force estimation for the mean and extreme wave conditions

      8. Modeling wave-body interactions (02/12/2022, C. Peyrard)
      • External forces applied on a body in waves : Froude-Krylov, diffraction, drag, lift, buoyancy
      • Equation of motions
      • Morison equation (small bodies)
      • Diffraction-radiation problem (large bodies)
      • Second and higher-order effects
      • Industrial codes and open research questions
      Project: Calculate the movement of a fixed or floating wind turbine

      9. Offshore wind turbine foundations (09/12/2022, C. Peyrard)
      • Fixed and floating offshore wind turbines
      • Pilot project sites
      • Design criteria, challenges, current needs for research
      Project: Finish up project calculations and report, prepare presentation

      10. Project presentations (16/12/2022, M. Yates)

      Veuillez patienter