Descriptif
This course offers a deep dive into Large Language Models (LLMs), blending essential theory with hands-on labs to develop both practical skills and conceptual understanding—preparing you for roles in LLM development and deployment.
The curriculum begins with a brief overview of key historical NLP techniques. It then transitions to the transformer architecture, focusing on its attention mechanism and tokenization—the core of modern LLMs. Pre-training objectives such as masked/denoising language modeling and causal language modeling will also be covered, forming the basis for models like BERT, GPT, and T5. The course then examines LLM post-training techniques used to refine pre-trained models, including instruction tuning (SFT), reinforcement learning from human feedback (e.g., PPO/DPO), and reinforcement learning from verifiable rewards (e.g., GRPO). Finally, the course will address LLM application and future directions—including RAG, agents, multimodality, and alternative model architectures.
Diplôme(s) concerné(s)
- Titre d’Ingénieur diplômé de l’École polytechnique
- MScT-Artificial Intelligence and Advanced Visual Computing
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Pour les étudiants du diplôme MScT-Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 2 ECTS
La note obtenue rentre dans le calcul de votre GPA.