v2.11.0 (5802)

PA - C6 - MEC662 : Hydro, Wind and Marine Resources

Domaine > Mécanique.

Descriptif

After the course the student should be able to

  • - use the basics of fluvial flows and tidal dynamics.
  • - understand the dynamics of atmospheric , fluvial or marine boundary layers
  • - understand the meteorological forcing and its variability
  • - estimate the wind, the fluvial or tidal energy potential of a particular site or region
  • - make the distinction between the amount of energy and the power available

- quantify the resource’s availability and its variability

Eligibility/Pre-requisites:

Basic knowledge in fluid mechanics, Bernoulli and Navier-Stokes equations.

Course main content:

The course is divided in three blocs dedicated to hydro , wind and marine resources.

1. 1 Introduction

                - Economical, environmental and political issues

                - Various units of energy, primary and final energy, capacity of some power plants

1. 2 Hydroelectric resource

                - Water cycle, potential temperature, precipitations

                - Gravitational energy: resource and energy

                - Conventional dam: principle, efficiency, power capacity, capacity factor

                - The mean total head H, head loss, maximum flow rate and power

                - Environmental impact and carbon budget of hydroelectric power plants

2. Laboratory demonstration (ENSTA)

Observations and quantification of free surface channel flows, fluvial-torrential transition, efficiency of small hydro-dam. Data analysis and personal homework.

 3. Fluvial hydraulics

                - Flow regimes, Froude number

                - Hydraulic load of a free surface flow

                - Fluvial-torrential transition

                - Hydraulic jump, dissipation

                - Energy and momentum conservation

                - Run of river electricity: principle, efficiency, power capacity, capacity factor

4. Basic Meteorology and wind resources

- Synoptic winds, global circulation

- local winds: sea breeze, mountain winds, …

- Wind variability, turbulence, Rayleigh decomposition

- Weibull distribution, wind spectra, turbulence intensity

5. Atmospheric or Oceanic boundary layers

- laminar boundary layer

turbulent boundary layer, logarithmic law

- stable or unstable boundary layers

- wind or hydro measurements within the boundary layer

- On-site resource assessment 

6. Wind or river turbines: Betz limits and turbines interactions

- The standard Betz law

- Betz law with a free surface

- Individual turbine wake and multiple turbines interaction

- On-site resource assessment

7. Laboratory demonstration (ENSTA) 

Head loss of a free surface flow: fluvial and torrential regime, turbulent boundary layer, bottom roughness, logarithmic law. Data analysis and personal homework.

8. Tidal wave and tidal power

                  - History: first uses of tidal power

                  - Astronomical forcing

                  - Ocean response: Kelvin waves and tidal waves

                  - Bay or estuary resonance: shallow-water model

                  - Impact of bottom friction

                  - Tidal power plant: principle, efficiency, power capacity

                - Environmental impact of tidal power plants

9. Tidal currents and tidal turbine

                - Tidal turbine: an emerging market

                - Tidal currents: variability, coastal amplification, tidal ellipses

                - French and UK resources

                - Bottom friction and boundary layer profile, turbine wake

                - Tidal turbine: principle, efficiency, power capacity, strengths and drawbacks.

 Examination and requirements for final grade:

The final grade is a combination of the reports from the laboratory sessions and a 3h individual examination with exercises (open book exam). 

Langue du cours : Anglais

Credits ECTS : 4

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme Energy Environment : Science Technology & Management

Le rattrapage est autorisé
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 4 ECTS

    Pour les étudiants du diplôme Renewable Energy, Science and Technology

    Le rattrapage est autorisé
      L'UE est acquise si note finale transposée >= C
      • Crédits ECTS acquis : 4 ECTS
      Veuillez patienter