Descriptif
Géométrie.
La géométrie étudie des espaces topologiques pourvus d'une structure supplémentaire: différentielle, riemannienne, lorentzienne, symplectique, holomorphe, algébrique, etc… Souvent issues de la physique, ces structures forment en retour le cadre naturel dans lequel se formulent les théories de la physique contemporaine, en particulier lorsque des phénomènes globaux sont mis en jeu.
D'un point de vue mathématique, les structures en question donnent lieu à autant de branches des mathématiques, qui intéragissent entre elles de multiples façons et s'appuient sur un large éventail de techniques analytiques, algébriques et topologiques.
Ainsi, la théorie des surfaces de Riemann pourra être abordée du point vue de la géométrie riemannienne, de l'analyse complexe, de l'analyse harmonique et de la géométrie algébrique. Ceci vaut plus généralement pour la géométrie complexe, qui étudie les variétés définies par des fonctions holomorphes.
Voici quelques pistes possibles pour des sujets de stage dans ces directions.
* Géométrie riemannienne: topologie et courbure.
* Théorie de jauge: l'étude des connections sur un fibré vectoriel, qui constitue le cadre naturel de la théorie de Yang-Mills.
* Surfaces de Riemannn: existence de fonctions méromorphes, théorème d'Abel-Jacobi, etc…
* Théorie de Hodge: analyse harmonique sur les variétés et cohomologie de de Rham.
* Introduction aux courbes algébriques.
* Fonctions holomorphes de plusieurs variables et pseudoconvexité.
* Feuilletages et tissus.
Systèmes dynamiques.
L'objet des systèmes dynamiques est l'étude sur un temps long d'une transformation agissant sur un espace de configurations. Les systèmes physiques sont souvent décrits par des équations différentielles qui conduisent à des flots continus et donc à une telle étude. Comme en général une équation différentielle ne s'intègre pas explicitement, on essaie d'obtenir des informations qualitatives en discrétisant le temps. On est alors amené à considérer des systèmes dynamiques discrets.
Ces deux grandes catégories se divisent elles-même en de multiples sous-catégories en fonction de la nature de la transformation et des structures géométriques qu'elle préserve (mesurable, topologique, différentiable, symplectique, holomorphe, algébrique). Si cette classification reste bien sûr très perméable, elle permet de dégager des concepts généraux pour chacune des classes. Mais souvent, ce sont en définitive les exemples significatifs exhibant de nouveaux phénomènes dynamiques qui orientent la recherche. Listons un peu plus en détails quelques pistes pour des sujets de stage.
* Dynamique symbolique. L'espace est une suite de symboles d'un alphabet fini, la transformation le décalage des coordonnées. Les propriétés de ces suites font intervenir des notions de bases de théorie ergodique comme l'entropie.
* Le flot géodésique. C'est un flot naturel sur toute surface, dont l'étude est particulièrement intéressante lorsque la courbure est négative. Sa dynamique permet de décrire des propriétés géométriques globales de la surface.
* Les systèmes hamiltoniens. Ces systèmes apparaissent naturellement en mécanique classique. Des techniques délicates permettent soit de construire des orbites périodiques (dans le problème à trois corps par exemple) ou de décrire leur stabilité (théorème KAM).
* Dynamique en petite dimension. L'étude de la famille x⇒ax(1-x) sur l'intervalle [0,1] présente des bifurcations en cascade spectaculaires, dont l'étude constitue une bonne introduction au chaos, et aux phénomènes d'universalité. Cette famille s'étend en dimension 2, et on peut alors observer des attracteurs étranges.
* Dynamique holomorphe. La théorie de l'itération des polynômes du plan complexe est particulièrement riche, et mélange analyse complexe et topologie des compacts du plan. Cette théorie est particulièrement visuelle, et de nombreuses images de fractales peuvent être obtenues, dont l'interprétation s'avère redoutable.
* Dynamique algébrique. Si l'itération d'applications rationnelles en dimension quelconque est un domaine qui mélange plusieurs théories difficiles, certaines questions avec des aspects numériques peuvent être abordées, comme par exemple l'étude de la croissance des degrés.
Langue du cours : Français
Credits ECTS : 20
Diplôme(s) concerné(s)
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 20 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 - Mathematiques Jacques Hadamard
Pour les étudiants du diplôme Echanges PEI
L'UE est acquise si note finale transposée >= C- Crédits ECTS acquis : 20 ECTS