v2.11.0 (5757)

PA - C5B - MEC662 : Hydro, Wind and Marine Resources

Domaine > Mécanique.

Descriptif

After the course the student should be able to

  • - use the basics of fluvial flows and tidal dynamics.
  • - understand the dynamics of atmospheric , fluvial or marine boundary layers
  • - understand the meteorological forcing and its variability
  • - estimate the wind, the fluvial or tidal energy potential of a particular site or region
  • - make the distinction between the amount of energy and the power available

- quantify the resource’s availability and its variability

Eligibility/Pre-requisites:

Basic knowledge in fluid mechanics, Bernoulli and Navier-Stokes equations.

Course main content:

The course is divided in three blocs dedicated to hydro , wind and marine resources.

1. 1 Introduction

                - Economical, environmental and political issues

                - Various units of energy, primary and final energy, capacity of some power plants

1. 2 Hydroelectric resource

                - Water cycle, potential temperature, precipitations

                - Gravitational energy: resource and energy

                - Conventional dam: principle, efficiency, power capacity, capacity factor

                - The mean total head H, head loss, maximum flow rate and power

                - Environmental impact and carbon budget of hydroelectric power plants

2. Laboratory demonstration (ENSTA)

Observations and quantification of free surface channel flows, fluvial-torrential transition, efficiency of small hydro-dam. Data analysis and personal homework.

 3. Fluvial hydraulics

                - Flow regimes, Froude number

                - Hydraulic load of a free surface flow

                - Fluvial-torrential transition

                - Hydraulic jump, dissipation

                - Energy and momentum conservation

                - Run of river electricity: principle, efficiency, power capacity, capacity factor

4. Basic Meteorology and wind resources

- Synoptic winds, global circulation

- local winds: sea breeze, mountain winds, …

- Wind variability, turbulence, Rayleigh decomposition

- Weibull distribution, wind spectra, turbulence intensity

5. Atmospheric or Oceanic boundary layers

- laminar boundary layer

turbulent boundary layer, logarithmic law

- stable or unstable boundary layers

- wind or hydro measurements within the boundary layer

- On-site resource assessment 

6. Wind or river turbines: Betz limits and turbines interactions

- The standard Betz law

- Betz law with a free surface

- Individual turbine wake and multiple turbines interaction

- On-site resource assessment

7. Laboratory demonstration (ENSTA) 

Head loss of a free surface flow: fluvial and torrential regime, turbulent boundary layer, bottom roughness, logarithmic law. Data analysis and personal homework.

8. Tidal wave and tidal power

                  - History: first uses of tidal power

                  - Astronomical forcing

                  - Ocean response: Kelvin waves and tidal waves

                  - Bay or estuary resonance: shallow-water model

                  - Impact of bottom friction

                  - Tidal power plant: principle, efficiency, power capacity

                - Environmental impact of tidal power plants

9. Tidal currents and tidal turbine

                - Tidal turbine: an emerging market

                - Tidal currents: variability, coastal amplification, tidal ellipses

                - French and UK resources

                - Bottom friction and boundary layer profile, turbine wake

                - Tidal turbine: principle, efficiency, power capacity, strengths and drawbacks.

 Examination and requirements for final grade:

The final grade is a combination of the reports from the laboratory sessions and a 3h individual examination with exercises (open book exam). 

Langue du cours : Anglais

Credits ECTS : 4

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Energy Environment : Science Technology & Management

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si note finale transposée >= C
      • Crédits ECTS acquis : 4 ECTS

      La note obtenue rentre dans le calcul de votre GPA.

      Pour les étudiants du diplôme Renewable Energy, Science and Technology

      Le rattrapage est autorisé (Note de rattrapage conservée)

        Pour les étudiants du diplôme Master 2 Énergie

        Le rattrapage est autorisé (Note de rattrapage conservée)
          L'UE est acquise si note finale transposée >= C
          • Crédits ECTS acquis : 4 ECTS

          Pour les étudiants du diplôme CLimat, Environnement, Applications et Recherche - Water, Air, Pollution and Energy

          Le rattrapage est autorisé (Note de rattrapage conservée)
            L'UE est acquise si note finale transposée >= C
            • Crédits ECTS acquis : 3 ECTS

            Pour les étudiants du diplôme Echanges PEI

            Le rattrapage est autorisé (Note de rattrapage conservée)
              L'UE est acquise si note finale transposée >= C
              • Crédits ECTS acquis : 5 ECTS
              Veuillez patienter