v2.11.0 (5725)

Cours scientifiques - CSE204 : Machine Learning

Domaine > Informatique.

Descriptif

Machine learning is an increasingly important area, and it has provided many of the recent advances behind applications of artificial intelligence. It is relevant to a plethora of application domains in science and industry including in finance, health, transport, linguistics, media, and biology.

Lectures will cover the most important concepts and algorithms. We will cover in some degree all the main paradigms of machine learning: supervised learning (regression, classification), unsupervised learning, and reinforcement learning. Among many learning algorithms we will look at:

  • least squares regression,
  • logistic regression,
  • k-nearest neighbors,
  • neural networks and deep learning,
  • decision tree inducers and ensemble methods,
  • principal components analysis,
  • k-means clustering
  • kernel methods
  • Q-learning.

In the labs, we will implement many of these and investigate their use in different applications. Programming will be done in Python with scientific libraries such as numpy and scikit-learn.

The main grading component is a team project, along with two in-class tests.

Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique

Vous devez avoir validé l'équation suivante : UE CSE101 Et UE CSE102 Et UE CSE201

Format des notes

Numérique sur 20

Littérale/grade américain

Pour les étudiants du diplôme Bachelor of Science de l'Ecole polytechnique

Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 11)
    L'UE est acquise si Note finale >= 9
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Echanges PEI

    Le rattrapage est autorisé (Note de rattrapage conservée écrêtée à une note seuil de 11)
      L'UE est acquise si Note finale >= 9
      • Crédits ECTS acquis : 5 ECTS
      Veuillez patienter