Descriptif
Course description. This course provides an advanced course on probability theory and
stochastic processes essential for modeling a variety of real-world scenarios and at the basis
of Machine Learning theory. Students will become experts in the language of probability
theory, enabling them to effectively analyze and address complex challenges in both pure
and applied sciences. In particular, this course will focus on the problem of generative
models and Monte Carlo methods.
Expectations for student learning outcomes. The course has three objectives. The
first is to present the foundations of probabilities based on the theory of abstract measure;
on this occasion, we construct probability spaces, probabilities on measured spaces, inte-
gration on abstract spaces, and we provide the essential properties of the integral. The
second is to present and provide analysis of Monte Carlo methods and their Markov Chain
version. Finally, the course will be concluded by a brief introduction to generative models.
On successful completion of this course, a student will be able to:
• Apply the fundamental concepts of probability theory and explain its position in modern
statistics, machine learning, and applied contexts.
• Apply basic Monte Carlo methods.
• Solve basic problems in machine learning and computational statistics relating to probability theory.
• Solve complex problems involving stochastic processes.
Pre-requisites: bachelor-level knowledge in statistics, probability, linear algebra and calculus.
Assessment: Exam and Lab
Plan for the Course:
Lectures 1–2: Basics of integration and measure theory, application to statistics
Lectures 3–4: Monte Carlo methods
Lectures 5–6: Conditional distributions and stochastic process
Lectures 7–8: Markov chains and MCMC
Lecture 9: Introduction to Generative models
effectifs minimal / maximal:
/120Diplôme(s) concerné(s)
- Programmes d'échange internationaux
- Non Diplomant
- Titre d’Ingénieur diplômé de l’École polytechnique
- M1 MJH - Mathématiques Jacques Hadamard
Objectifs de développement durable
ODD 7 Energie propre et d’un coût abordable.Pour les étudiants du diplôme Programmes d'échange internationaux
Vous devez avoir validé l'équation suivante : 1 parmi APM_41033_EP
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Il est nécessaire d'avoir suici au moins un cours par mi MAP432, MAP433
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Programmes d'échange internationaux
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Non Diplomant
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme M1 MJH - Mathématiques Jacques Hadamard
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Vos modalités d'acquisition :
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.