Descriptif
L'objectif de ce cours est de montrer aux étudiants comment les statistiques sont utilisées dans la pratique pour répondre à une question précise, en introduisant une série d'approches importantes basées sur des modèles.
Les étudiants apprendront à sélectionner et utiliser les méthodologies stratégiques appropriées et à aquérir des compétences solides et pratiques à l'aide d'exemples concrets d'ensembles de données réelles issus de différents domaines y compris, entre autres, de la médecine, génomique, écologie.
Toutes les analyses seront réalisées sur un logiciel R. Des connaissances en programmation R ne sont pas requises (seulement en script de base).
Evaluation : 1 ou 2 projects de groupe + 1 rapport de PC + un examen final
Langue du cours : Français
effectifs minimal / maximal:
/80Diplôme(s) concerné(s)
- M1 Mech - Mécanique
- AUDITEURS - IP Paris
- M1 DS4Health - Compétences numériques pour la transformation des soins de santé
- Programmes d'échange internationaux
- M1 IES - Innovation, Entreprise et Société
- Titre d’Ingénieur diplômé de l’École polytechnique
- MScT-Artificial Intelligence and Advanced Visual Computing
- M1 MJH - Mathématiques Jacques Hadamard
- MScT-Visual Computing and Creative AI
- MScT-Trust and Responsible AI
Parcours de rattachement
- PA-Panaché P2
- M1 - Compétences numériques pour la transformation des soins de santé - Master 1A
- MScT AI-ViC - Semestre 2
- MScT-Visual Computing and Creative AI - 1ère année Master of Science and Technology (Graduate degree)
- MScT-Trust and Responsible AI
- AUDITEURS - IP Paris - Non diplomant - ENSTA
Objectifs de développement durable
ODD 7 Energie propre et d’un coût abordable.Format des notes
Numérique sur 20Littérale/grade américainPour les étudiants du diplôme AUDITEURS - IP Paris
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 DS4Health - Compétences numériques pour la transformation des soins de santé
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 7
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 MJH - Mathématiques Jacques Hadamard
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 7
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme MScT-Trust and Responsible AI
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
- Crédits ECTS acquis : 4.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme MScT-Visual Computing and Creative AI
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Programmes d'échange internationaux
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme MScT-Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
- Crédits ECTS acquis : 4.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Max entre les deux notes)- le rattrapage est obligatoire si :
- Note initiale < 10
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 10
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 Mech - Mécanique
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 7
- Crédits ECTS acquis : 3 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme M1 IES - Innovation, Entreprise et Société
Le rattrapage est autorisé (Note de rattrapage conservée)- le rattrapage est obligatoire si :
- Note initiale < 7
- le rattrapage peut être demandé par l'étudiant si :
- Note initiale < 7
- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Programme détaillé
- Tests statistiques (x2)
- Comparaison de deux populations
- Analyses de pouvoir
- Tests multiples
- Modèles de regression (x2)
- Modèle de régression linéaire et non linéaire
- Modèles de régression linéaire
- Inférence diagnostique, Comparaison de modèles
- Modèles à effets mixtes (x2)
- Modèles à effets mixtes linéaires
- Modèles à effets mixtes non linéaires
- Densités mélanges et groupement basé sur des modèles (x3)
- Modèle de mélange gaussien pour groupement de données
- Modèles de blocs stochastiques pour groupement de graphes
- Algortihme espérence-maximisation (des variations)