Descriptif
Sociology of energy transitions: innovation, socio-technical change and controversies in the energy sector
Polytechnique Graduate degree, September-December 2019
Teacher: Claire Le Renard
Under the banner of "energy transition", energy-related stakes and issues stand high on the media and public policy agenda. But when it comes to the implementation of this transition, many debates and controversies arise. For instance, renewable energy production contributes to global challenges for the energy-climate issue, but can give rise to acute conflicts around local projects, which some researchers have characterized as "green on green" controversies (Warren et al., 2005). More broadly, energy issues engage a wealth of different actors and sectors, far beyond the technical developments: a good example is the recent debate about fuel taxation, (car) mobility, infrastructures, and climate change mitigation policies in France. In the words of a student (March 2019), “people today literally inhabit energy systems”.
This seminar considers energy issues with a sociological stance, resting on the contributions of Science and Technology Studies (STS), a branch of sociology and history devoted to the study of science and technology issues, as well as insights from opinion sociology and public policy analysis centred on energy issues. As lessons learnt from past transitions provide valuable insights to consider the present and future in an informed manner, the seminar rests on case studies in the energy sector, in several countries and time periods.
At the end of the seminar, students will:
- be able to consider past and present “energy transitions” with a sociological point of view, including topics such as innovation and participatory procedures concerning major sociotechnical projects;
- be familiar with some theories accounting for stability and/or change regarding socio-technical developments;
- be trained to read the most significant elements of a non-fiction text in a (short) given time, and taking part in the conversation about the text by preparing a short comment or question to share about it.
The seminar is participatory and interactive, and students are welcome to bring up material they find interesting about energy transition and the social (articles, videos,…) and / or share their insights and thoughts. Some debates will take place in the class.
Students’ evaluation rests on an oral presentation of the main points of a research article (from session 3 on), individually or in pairs, in a 20 minute frame, as well as a short essay at the end of the course (3-5 pages). Participation in the seminar accounts for 10% of the grade.
Session 1 (Sept. 24) Introduction to the course.
Session 2 (Oct. 1st) The social dimensions of energy transitions
Miller, C. A., Iles, A., & Jones, C. F. (2013). The social dimensions of energy transitions. Science as Culture, 22(2), 135-148.
Session 3 (Oct. 15) The making of a centralised electricity system
Hughes, T. (1979). The Electrification of America: The System Builders. Technology and Culture, 20(1), 124-161. doi:10.2307/3103115 (also available in French)
Session 4 (Oct. 22) Nuclear energy, technopolitics and sociotechnical imaginaries
Hecht, G. (2001). Technology, politics, and national identity in France. In Thad Allen, M., & Hecht, G. (2001). Technologies of power: essays in honor of Thomas Parke Hughes and Agatha Chipley Hughes. MIT Press. 253-293.
Jasanoff, S., & Kim, S. H. (2009). Containing the atom: Sociotechnical imaginaries and nuclear power in the United States and South Korea. Minerva, 47(2), 119-146.
Optional reading: Hecht, G. (2009; 1998), The Radiance of France: Nuclear Power and National Identity after World War II, MIT Press. (chapter 2, “Technopolitical regimes”). This chapter is the chapter 1 in the French version of the book (2004), "Le nucléaire et ses régimes technopolitiques". (books are available at the library)
Session 5 (Nov. 5) How does sociotechnical change take place? Theory #1.
Akrich, M., Callon, M., Latour, B., & Monaghan, A. (2002). The key to success in innovation part I and II. International journal of innovation management,6(02), 187-206. (also available in French)
Session 6 (Nov. 12) How does sociotechnical change take place? Theory #2.
Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research policy,31(8-9), 1257-1274.
Case study: Geels, F. W., Kern, F., Fuchs, G., Hinderer, N., Kungl, G., Mylan, J., ... & Wassermann, S. (2016). The enactment of socio-technical transition pathways: a reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014). Research Policy,45(4), 896-913.
Session 7 (Nov. 19) Radical innovation, sociotechnical promises and democracy
Bakker, S., Van Lente, H., & Meeus, M. (2011). Arenas of expectations for hydrogen technologies. Technological Forecasting and Social Change,78(1), 152-162.
Joly, P. B. (2010). On the economics of techno-scientific promises. in Akrich, M., Barthe, Y., Muniesa, F., Mustar, P. (eds.) Débordements. Mélanges offerts à Michel Callon, Paris, Presses des Mines, 203-222. https://books.openedition.org/pressesmines/703?lang=en
Session 8 (Nov. 26) Wind energy policies and “green on green” controversies
Karnøe, P., & Garud, R. (2012). Path creation: Co-creation of heterogeneous resources in the emergence of the Danish wind turbine cluster. European Planning Studies,20(5), 733-752.
Wüstenhagen R, Wolsink M, Bürer MJ. (2007) Social acceptance of renewable energy innovation: An introduction to the concept. Energy policy 2007, 35:2683-2691. doi: 10.1016/j.enpol.2006.12.001.
Session 9 (Dec. 3) Energy stakes hidden in non-energy policies
Royston, S., Selby, J., & Shove, E. (2018). Invisible energy policies: A new agenda for energy demand reduction. Energy Policy, 123, 127-135. https://www.sciencedirect.com/science/article/pii/S0301421518305810
Hansen, A., Nielsen, K. B., & Wilhite, H. (2016). Staying Cool, Looking Good, Moving Around: Consumption, Sustainability and the ‘Rise of the South’. In Forum for Development Studies (Vol. 43, No. 1, pp. 5-25). Routledge.
Session 10 (Dec. 10) if needed (?)
If this session can be used, session 5 could be devoted to “Nuclear governance and policy change”, and the remaining sessions shifted accordingly.
Optional session 5: Nuclear governance and policy changes
Barthe, Y. (2009) ‘Framing nuclear waste as a political issue in France’ ,Journal of Risk Research, 12(7-8), 941-954.
Müller, W. C. and Thurner, P. W. (Eds.) (2017) The Politics of Nuclear Energy in Western Europe, Oxford University Press. (chapter tbd)
Diplôme(s) concerné(s)
- Cybersecurity : Threats and Defenses
- Internet of Things : Innovation and Management Program (IoT)
- Economics, Data Analytics and Corporate Finance
- Artificial Intelligence and Advanced Visual Computing
- Ecotechnologies for Sustainability & Environment Management
- Smart Cities and Urban Policy
- Data Science for Business
- Energy Environment : Science Technology & Management
Parcours de rattachement
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme Cybersecurity : Threats and Defenses
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Smart Cities and Urban Policy
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Internet of Things : Innovation and Management Program (IoT)
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Data Science for Business
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Ecotechnologies for Sustainability & Environment Management
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Artificial Intelligence and Advanced Visual Computing
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Economics, Data Analytics and Corporate Finance
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Energy Environment : Science Technology & Management
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 1.5 ECTS