v2.11.0 (5757)

Cours scientifiques - DS-télécom-6 : Apprentissage Profond 1

Domaine > Mathématiques appliquées.

Descriptif

"Deep Learning I"
M2 Data-Science
Geo roy Peeters, Alasdair Newson (Telecom Paris)
2022-2023


Teachers: Geo roy Peeters, Alasdair Newson (Telecom Paris, IP-Paris)

Deep Learning (machine learning based on deep artificial neural networks) has become extremely popular over the last years due to the very good results it allows for tasks such as regression, classification or genera- tion. The objective of this course is to provide a theoretical understanding and a practical usage of the three main types of networks (Multi-Layer- Perceptron, Recurrent-Neural-Network and Convolutional Neural Network). The content of this course ranges from the perceptron to the generation of adversarial images. Each theoretical lecture is followed by a practical lab on the corresponding content where student learn to implement these networks using the currently three popular frameworks: pytorch, tensorflow and keras.

 

Format : 6 sessions of 3.5 hours + Exam

 

Lectures content:

  • Multi-Layer-Perceptron (MLP): Perceptron, Logistic Regression, Chain rule, Back-propagation, Deep Neural Activation functions, Vanishing gradient, Ini- tialization, Regularization (L1,L2,DropOut), Alternative Gradient Descent, Batch-

            normalization

  • Recurrent Neural Network (RNN) : Simple RNN, Forward Propagation, Backward Propagation Through Time, Vanishing/ Exploding gradients, Gated Units (LSTM, GRU), Various architectures, Sequence-to-sequence, Attention model
  • Convolutional Neural Network (CNN) : CNNs use sparse connectivity and weight sharing to reduce parameters and create more powerful networks , connections are organized in a convolution operation, CNNs now provide the state- of-the-art in a vast array of problems, we will see how CNNs work and we will implement them for classification problems

 

Labs content :

  • text recognition, sentiment classification 
  • music generation
  • image recognition
  • image generation

 

Programming language

  • Python (numpy, scikit-learn, matplotlib)
  • DL frameworks: pytorch, tensorflow, keras
  • Use Télécom computers, your own labtop or colab.research.google.com → needs a Google account → open one before the first Lab !
  • a Graphics Processing Unit (GPU) will not be required, however if you have one, this will speed up the learning process

 

Grading : 30% labs/project + 70% written exam

 

Objectifs pédagogiques

Grading: 30% labs/project + 70% written exam

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M2 HPDA - High Performance Data Analytics

Pour les étudiants du diplôme M1 Mathématiques Appliquées et Statistiques

Pour les étudiants du diplôme M2 Physique par Recherche

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 3 ECTS

    Pour les étudiants du diplôme M2 Data Science

    Le rattrapage est autorisé (Max entre les deux notes)
      L'UE est acquise si Note finale >= 10
      • Crédits ECTS acquis : 3 ECTS

      Programme détaillé

      Format: 6 sessions of 4 hours + Exam

      Veuillez patienter