Descriptif
PHY569A - Physique des plasmas et fusion thermonucléaire
En raison de sa forte ionisation, qui induit des comportements spécifiques, le plasma est un état de la matière singulier, au regard des états solide, liquide et gazeux qui structurent notre environnement terrestre. D’où son appellation de quatrième état de la matière. Les plasmas sont omniprésent dans l’Univers. Beaucoup de plasmas naturels, comme la surface du Soleil, les gaz interstellaires, les pulsars ou la magnétosphère terrestre, montrent des comportements spécifiques liés aux effets des forces électriques et magnétiques. La physique des plasmas a été développée non seulement pour interpréter ces plasmas, mais aussi dans la quête de la génération d’énergie par fusion nucléaire. Cette physique est structurée d’une part par des grands programmes de recherches cognitives (en sciences de la matière, en astrophysique, en planétologie, sur les ultra-hautes intensités laser, …) et d’autre part par des recherches axées sur des enjeux sociétaux majeurs, rassemblant la fusion thermonucléaire, les processus innovants pour la structuration et la résistance des matériaux, l’environnement, la santé.
Cet enseignement offre une introduction aux principes de base de la physique des plasmas et de la fusion thermonucléaires. Il est constitué par une introduction aux principes et méthodes de la physique des plasmas suivie par une présentation de la problématique de la combustion thermonucléaire contrôlée, qu’il s’agisse de la voie du confinement magnétique (le projet international ITER) ou du confinement inertiel (les projets Mégajoule en France et NIF aux USA), et enfin un aperçu des réalisations et performances des systèmes expérimentaux actuels.
Langue du cours : Anglais
Diplôme(s) concerné(s)
Parcours de rattachement
Pour les étudiants du diplôme Programmes d'échange internationaux
Electromagnétisme, mécanique, mécanique des fluides, physique statistique.
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
PHY430 PHY433
Format des notes
Numérique sur 20Littérale/grade réduitPour les étudiants du diplôme M1 Physique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
La note obtenue rentre dans le calcul de votre GPA.
Pour les étudiants du diplôme Programmes d'échange internationaux
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique
Le rattrapage est autorisé (Note de rattrapage conservée)- Crédits ECTS acquis : 5 ECTS
Programme détaillé
1- Introduction à la Physique des plasmas. Plasmas dans la nature : de l’espace au laboratoire. Classification des plasmas, applications des plasmas.
2- Echelles caractéristiques : fréquence de Langmuir, temps de Maxwell, longueur de London, de Debye et de Kelvin. Ionisation : formule de Saha. Collisions coulombiennes.
3- Fusion thermonucléaire. Réactions de fusion. Taux de réaction. Critère de Lawson. Confinement inertiel. Compression et allumage. Allumage par point chaud. Régime isobare et régime isochore. Les projets LMJ et NIF.
4- Orbites et confinement des particules chargées. Adiabaticité et centre guide. Dérives de gradient et de courbure, force diamagnétique. Invariants adiabatiques et configurations Tokamaks. Le projet ITER.
5- Mécanismes d’ionisation de la matière irradiée par un faisceau laser. De la théorie cinétique à la théorie fluide. Modèle à deux fluides.
6- Ondes dans les plasmas non-magnétisés. Propagation d’une onde électromagnétique dans un plasma : fréquences plasma, approximations WKB, absorption résonnante.
7- Plasmas collisionnels, fréquence de collision électron-ion. Absorption des ondes électromagnétiques. Interaction non-linéaire : force pondéromotrice, instabilités, amortissement Landau. Mécanismes non-collisionnels d’absorption.
8- Expansion hydrodynamique d’un plasma créé par laser, écoulement self-similaire. Propriétés radiatives des plasmas chauds: modèles d’équilibre, calculs spectroscopiques, transport de la radiation.
9- Interaction laser-plasma relativiste. Rappels de relativité et de mécanique hamiltonienne. Théorie fluide de l’interaction relativiste. Force pondéromotrice relativiste. Mouvement d’un électron dans un champ laser ultra-intense.