v2.11.0 (5790)

PA - C4B - PHY661B : Photovoltaic Technologies in Industry (PV Ind)

Domaine > Physique.

Descriptif

This course makes the link between the fundamental physics of photovoltaic devices and the practical reality of selling PV-generated kWh.
It is composed of two parts: (1) an intensive laboratory component (24 hours spent in a research lab) giving students the opportunity to fabricate and test photovoltaic devices in a research environment, and (2) three lectures given by our industrial partners from Total, concerning the PV industry.

Objectifs pédagogiques

After taking this course, the student should be able to:

  • Laboratory Component:
  • Demonstrate experimental familiarity with critical elements of photovoltaic device fabrication or advanced material/device characterization
  • Describe their own laboratory research result in the field of photovoltaics
  • Apply their knowledge of the experimental design and methods particular to PV to defend or moderate their results.
  • Identify, use and weight the physical parameters in a photovoltaic system and critical output metrics

 

  • Industrial Lecture Component
  • Describe the industrial steps to produce photovoltaic modules
  • Identify usage of photovoltaics in appropriate applications
  • Have a global vision of the photovoltaics market, value chain and main players
  • Quantitatively evaluate PV system costs and PV electricity costs
  • Take into account safety
  • Carry scientific messages on the environmental impact of photovoltaics 

30 heures en présentiel
réparties en:
  • Travaux pratiques : 24
  • Séminaire : 6

effectifs minimal / maximal:

/35

Diplôme(s) concerné(s)

Parcours de rattachement

Pour les étudiants du diplôme Echanges PEI

Theoretical course on photovoltaics (Physics and Engineering of Photovoltaic Devices or equivalent)

Pour les étudiants du diplôme Energy Environment : Science Technology & Management

Theoretical course on photovoltaics (Physics and Engineering of Photovoltaic Devices or equivalent)

Pour les étudiants du diplôme Renewable Energy, Science and Technology

Theoretical course on photovoltaics (Physics and Engineering of Photovoltaic Devices or equivalent)

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme Energy Environment : Science Technology & Management

Vos modalités d'acquisition :

Combination Laboratory work (24 hours) / Lecture (6 hours)

Evaluation: 25 page report, group presentation with questions, quiz on industrial lectures

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 4 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Renewable Energy, Science and Technology

    Vos modalités d'acquisition :

    Combination Laboratory work (24 hours) / Lecture (6 hours)

    Evaluation: 25 page report, group presentation with questions, quiz on industrial lectures

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si note finale transposée >= C

        Pour les étudiants du diplôme Echanges PEI

        Vos modalités d'acquisition :

        Combination Laboratory work (24 hours) / Lecture (6 hours)

        Evaluation: 25 page report, group presentation with questions, quiz on industrial lectures

        Le rattrapage est autorisé (Note de rattrapage conservée)
          L'UE est acquise si note finale transposée >= C

            Programme détaillé

            Introductory Lecture

            - Overview of laboratory options and specialization selection (2hrs)

            Laboratory Sessions

            24 hours total: 6 x 4 hours each, spent in laboratory

            Students focus on one of many topics concerning PV technologies (subjects change each year)

            • Standalone PV Systems (GEEPS)
            • Data Analysis for PV (SIRTA)
            • Advanced characterization techniques (GEEPS)
            • III-V materials and characterization (C2N)
            • Perovskite Solar Cells (LPICM)
            • Crystalline Silicon Heterojunction Solar Cells (LPICM)
            • More with each year

            Industrial Lectures

             I: PV industry, market and economy

            The photovoltaic industry – an overview

            - Historical development of PV, Applications, Technology, Markets / economy

            Reminder of basics and metrics of PV

            - PV systems, efficiency and Watt peak, other physical parameters, Performance: cells to module, Sun and intermittency

            Snapshot of current industry and market

            - Market and trends, Actors : location, technology, structure

            - An idea of current costs and performances 

            Industrial production of PV

            - Production line, Silicon, Ingot, Wafer, Cells, Modules,
            - Thin films (TF-Si, CdTe, CIGS), III-V, OPV, DSC
            Production management, purchasing
            - Norms and certifications, Structure of costs in production, Financing / capitalization,

            Main actors

            Electricity production with PV projects

            -  PV system, Structure, type, space, Producible : management of losses, simulation, Watt peak to kWh to €, Project development

            -  Structure of costs, Levelized Cost of Electricty (LCOE), Economical schemes / Finances, Grid parity, FiT, Portfolio, Tax credit / subsidies, Self-consumption, Main actors 

            HSE

            -  Industrial safety, Installation safety, Environmental impact of PV 

            Industrial Lecture II: Industrial R&D programs and innovation

            1. Introduction: Research & Development vs Innovation
            2. R&D as a segment of an industrial activity
              b. Innovation as a state of mind in a Company
              c. Disruptive innovation: ‘what (could) make great companies fail? 
            3. Research & Development in Solar PV: several ten years of progress in cell efficiency
            4. NREL compilation of hero (certified) cells:
              b. Outstanding industrial (and R&D) players: who drives performance up?
              c. Top ten research centers around the world 
            5. Different PV technologies addressing different markets: State-of-the-art / challenges / perspectives
            6. Crystalline Si: an old lady? (including purification/ingoting/wafering/cell conversion)
            7. mc-Si
            8. c-Si

            iii. Alternative technologies: ribbons, smart-cutting technologies... 

            1. Thin films:
            2. CdTe
            3. a-Si, pm-Si, μc-Si, pc-Si...

            iii. CI(G)S & CZTS

            1. Organic / hybrids
            2. Printed polymers: bilayer, bulk heterojunction
            3. Small molecules: evaporation or printing technologies? 

            iii. Dye sensitized structures

            1. III-V semiconductors:
            2. Single-junctions
            3. Multijunction
            4. The nano and quantum tool box: 
            5. Nano wires
            6. Quantum dots

            iii. Intermediate band structures

            1. Transverse activities: a ‘must’ to address the complete value chain:
            2. Modules and systems
            3. Reverse engineering
            4. Specific issues to PV industry as seen from R&D:
            5. Raw materials
              b. Time to market: from theoretical concept to lab device... to industry and market
            6. Industrial transfer: scale-up, control control control, stage-gate procedures
              d. R&D as a support to production 

            Environmental and EHS issues 

             

            Mots clés

            laboratory

            Méthodes pédagogiques

            research laboratory sessions (24 hrs)
            Veuillez patienter