v2.11.0 (5725)

Programme d'approfondissement - PHY563 : Sciences des Matériaux pour la Conversion et le Stockage de l'Energie

Domaine > Physique.

Descriptif

PHY563 - Sciences des Matériaux pour l'Energie

Ce module est l'occasion de mettre en relation des connaissances scientifiques et techniques pour l'analyse de systèmes énergétiques, qu'ils concernent la conversion, le stockage ou l'utilisation rationnelle de l'énergie, autour de la question des matériaux. L'enseignement est composé de cours magistraux, de petites classes en demi-groupes et d’un projet en binôme/trinôme. Les cours couvrent les différents aspects théoriques et applicatifs du module. Les PC peuvent être des sessions d’exercices avec groupes de niveaux, ou des lectures/visionnages guidées d’articles ou présentations scientifiques sur des questions associant problématiques énergétique et sciences de la matière. Enfin, chaque étudiant travaille sur une question/problème « Matériaux » lié à la conversion, le stockage ou l’utilisation de l’énergie. Durant ce projet, suivi par les enseignants via des entretiens réguliers, les étudiants sont invités à approfondir leur intérêt pour la thématique à travers des recherches bibliographiques et des rencontres avec des professionnels du milieu de l’énergie (chercheurs, entrepreneurs, grands groupes).

L'enseignement sera l'occasion de donner des bases dans des domaines tels que la thermodynamique hors équilibre, l'électrochimie, la liaison chimique, les interfaces, la catalyse, les phénomènes de transport, la préparation, la caractérisation et la dégradation des matériaux… en privilégiant une présentation opérationnelle et en montrant l'identité de nombreux concepts apparus dans des contextes différents, en chimie et en physique notamment. Seront abordés à la fois les problèmes relatifs à la génération d'énergie (Energies solaires photovoltaïque et thermodynamique, thermoélectricité, fuels solaires et valorisation du CO2, biomasse, éolienne, marine,…) ainsi que ceux relatifs à sa gestion : stockage et transport (Vecteur Hydrogène, Batteries, Supercapacités, Piles à combustibles, catalyse, transport d'électricité …) ou à sa bonne utilisation (utilisation rationnelle, économies d'énergie, analyse du cycle de vie, stabilité et dégradation des matériaux…).

 

Prérequis : des bases en thermodynamique et thermochimie, et des notions de mécanique quantique et statistique seront utiles. Voir par exemple le « Physics refresher’s course » proposé par D. Suchet en septembre.
Modalités d'évaluation : La note finale est composée d’une évaluation du rapport écrit (50%), d’un QCM (30min, 25%) et d’un examen oral (12 minutes de discussion sur le projet, 25%).
Langue du cours :
Anglais

 

Lecture recommandée

[1–11]

[1]       C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics, Wiley New York, 1996.

[2]       D. MacKay, Sustainable Energy-without the Hot Air, UIT Cambridge, 2008.

[3]       M. F. Ashby, D. R. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, Elsevier, 2012.

[4]       D. R. Jones, M. F. Ashby, Engineering Materials 2: An Introduction to Microstructures and Processing, Butterworth-Heinemann, 2012.

[5]       D. S. Ginley, D. Cahen, Fundamentals of Materials for Energy and Environmental Sustainability, Cambridge University Press, 2011.

[6]       J. Bockris, Electrochemistry for Ecologists, Springer Science & Business Media, 2012.

[7]       R. Huggins, Advanced Batteries: Materials Science Aspects, Springer Science & Business Media, 2008.

[8]       R. A. Huggins, Energy Storage, Springer, 2010.

[9]       G. Rothenberg, Catalysis: Concepts and Green Applications, John Wiley & Sons, 2017.

[10]     M. F. Ashby, Materials and Sustainable Development, Butterworth-Heinemann, 2015.

[11]     M. F. Ashby, Materials and the Environment: Eco-Informed Material Choice, Elsevier, 2012.

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M1 Chimie et Interfaces

Pour les étudiants du diplôme M2 Eau, Pollution de l'Air et Energies

L'UE est acquise si note finale transposée >= C
  • Crédits ECTS acquis : 3 ECTS

Pour les étudiants du diplôme Programmes d'échange internationaux

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme M1 Innovation, Entreprise et Société

    Pour les étudiants du diplôme Non Diplomant

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si note finale transposée >= C
      • Crédits ECTS acquis : 5 ECTS

      Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique

      Le rattrapage est autorisé (Note de rattrapage conservée)
        L'UE est acquise si note finale transposée >= C
        • Crédits ECTS acquis : 5 ECTS

        La note obtenue rentre dans le calcul de votre GPA.

        Pour les étudiants du diplôme MScT-Energy Environment : Science Technology & Management

        Le rattrapage est autorisé (Note de rattrapage conservée)
          L'UE est acquise si note finale transposée >= C
          • Crédits ECTS acquis : 4 ECTS

          La note obtenue rentre dans le calcul de votre GPA.

          Veuillez patienter