v2.6.0 (3482)

PA - C2B - INF554 : Machine and Deep learning

Domaine > Mathématiques appliquées, Informatique.

Descriptif

Edition 2020-21

We have entered the Big Data Era. The explosion and profusion of available data in a wide range of application domains rise up new challenges and opportunities in a plethora of disciplines – ranging from science and engineering to business and society in general. A major challenge is how to take advantage of the unprecedented scale of data, in order to acquire further insights and knowledge for improving the quality of the offered services, and this is where Machine and Deep Learning comes in capitalizing on techniques and methodologies from data exploration (statistical profiling, visualization) aiming at identifying patterns, correlations, groupings, modeling and doing predictions. In the last years Deep learning is becoming a very important element for solving large scale prediction problems. 

The Introduction to Machine and Deep Learning class will cover the following aspects:

  • The Machine Learning Pipeline
  • Unsupervised Learning
  • Data Preprocessing and Exploration
  • Feature Selection/Engineering & Dimensionality reduction
  • Supervised Learning 
  • Deep and Reinforcement Learning

 

Logistics

1. The course will take place on Mondays afternoon from 21/09/2020 for 9 weeks and will be divided into nine 4-hour sessions Due to the COVID situation we will conduct the course/labs with VIDEO online synchronous classes/labs

- magistral teaching (14:00 - 16:00) FOLLOW THIS ZOOM LINK FOR ALL CLASSES

-  online lab sessions (16:15 - 18:15) FOLLOW THIS ZOOM LINK FOR ALL LABS

 

Interaction/Q&As: 
As there is currently lack of physical co presence a slack channel was set up for individual questions to course/lab teachers: https://inf554workspace.slack.com. Please us it as much as possible. 
We will also set up some online video time slots to handle your questions in real time. 
 
We will also try to provide recorded versions of the class and the labs if the storage requirements can be met. 

IPPMaster and other students - access: 

you may get access to the course and material by registering to this form: 

we will then send you your guest access code. 

2. The students will have to complete the course work on their own laptops (preferably with a Unix environment like Linux or Mac OS X for compatibility reasons). As for software, we will be using  Python among others (to be installed locally on the laptops). Students are invited to install the Anaconda distribution version 3.7 BEFORE the 1st lab session.

 

 

Format des notes

Numérique sur 20

Littérale/grade réduit

Pour les étudiants du diplôme M2 Biomeca - Biomechanics

L'UE est acquise si note finale transposée >= C
  • Crédits ECTS acquis : 3 ECTS

Pour les étudiants du diplôme M1 - Applied Mathematics and statistics

L'UE est acquise si note finale transposée >= C
  • Crédits ECTS acquis : 5 ECTS

Pour les étudiants du diplôme M1 MPRI - Foudations of Computer Science

L'UE est acquise si note finale transposée >= C
  • Crédits ECTS acquis : 5 ECTS

Pour les étudiants du diplôme M1 Physique - Voie Irène Joliot Curie - X

L'UE est acquise si note finale transposée >= C
  • Crédits ECTS acquis : 5 ECTS

Pour les étudiants du diplôme M2 - Energy Infrastructures Management

Le rattrapage est autorisé (Note de rattrapage conservée)
    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    La note obtenue rentre dans le calcul de votre GPA.

    Pour les étudiants du diplôme Non Diplomant

    L'UE est acquise si note finale transposée >= C
    • Crédits ECTS acquis : 5 ECTS

    Pour les étudiants du diplôme M1 - Physics

    Le rattrapage est autorisé (Note de rattrapage conservée)
      L'UE est acquise si note finale transposée >= C
      • Crédits ECTS acquis : 5 ECTS

      La note obtenue rentre dans le calcul de votre GPA.

      Pour les étudiants du diplôme M1 Cyber - Cybersecurity

      Le rattrapage est autorisé (Note de rattrapage conservée)
        L'UE est acquise si note finale transposée >= C
        • Crédits ECTS acquis : 5 ECTS

        Pour les étudiants du diplôme M1 HPDA - High Performance Data Analytics

        Le rattrapage est autorisé (Note de rattrapage conservée)
          L'UE est acquise si note finale transposée >= C
          • Crédits ECTS acquis : 5 ECTS

          Pour les étudiants du diplôme M2 Data AI - Data and Artificial Intelligence

          Vos modalités d'acquisition :

          2.5 ECTS si l'élève fait la version "courte" soit 24h du cours  .

          Le rattrapage est autorisé (Note de rattrapage conservée)
            L'UE est acquise si note finale transposée >= C
            • Crédits ECTS acquis : 5 ECTS

            Pour les étudiants du diplôme M1 IGD - Interaction, Graphic and Design

            Le rattrapage est autorisé (Note de rattrapage conservée)
              L'UE est acquise si note finale transposée >= C
              • Crédits ECTS acquis : 5 ECTS

              Pour les étudiants du diplôme Cyber Physical System

              Le rattrapage est autorisé (Note de rattrapage conservée)
                L'UE est acquise si note finale transposée >= C
                • Crédits ECTS acquis : 4 ECTS

                Pour les étudiants du diplôme M2 HPDA - High Performance Data Analytics

                Le rattrapage est autorisé (Note de rattrapage conservée)
                  L'UE est acquise si note finale transposée >= C
                  • Crédits ECTS acquis : 5 ECTS

                  Pour les étudiants du diplôme M1 Informatique - Voie Jacques Herbrand - X

                  Le rattrapage est autorisé (Note de rattrapage conservée)
                    L'UE est acquise si note finale transposée >= C
                    • Crédits ECTS acquis : 5 ECTS

                    Pour les étudiants du diplôme M1 Data AI - Data and Artificial Intelligence

                    Vos modalités d'acquisition :

                    2.5 ECTS si l'élève fait la version "courte" soit 24h du cours  .

                    Le rattrapage est autorisé (Note de rattrapage conservée)
                      L'UE est acquise si note finale transposée >= C
                      • Crédits ECTS acquis : 5 ECTS

                      Pour les étudiants du diplôme M1 Innovation, Entreprise, et Société - Voie Innovation technologique

                      Le rattrapage est autorisé (Note de rattrapage conservée)
                        L'UE est acquise si note finale transposée >= C
                        • Crédits ECTS acquis : 5 ECTS

                        La note obtenue rentre dans le calcul de votre GPA.

                        Pour les étudiants du diplôme Artificial Intelligence and Advanced Visual Computing

                        Le rattrapage est autorisé (Note de rattrapage conservée)
                          L'UE est acquise si note finale transposée >= C
                          • Crédits ECTS acquis : 5 ECTS

                          La note obtenue rentre dans le calcul de votre GPA.

                          Pour les étudiants du diplôme M1 CPS - Cyber Physical Systems

                          Le rattrapage est autorisé (Note de rattrapage conservée)
                            L'UE est acquise si note finale transposée >= C
                            • Crédits ECTS acquis : 5 ECTS

                            Pour les étudiants du diplôme Echanges PEI

                            Le rattrapage est autorisé (Note de rattrapage conservée)
                              L'UE est acquise si note finale transposée >= C
                              • Crédits ECTS acquis : 5 ECTS

                              Pour les étudiants du diplôme Diplôme d'ingénieur de l'Ecole polytechnique

                              Le rattrapage est autorisé (Note de rattrapage conservée)
                                L'UE est acquise si note finale transposée >= C
                                • Crédits ECTS acquis : 5 ECTS

                                La note obtenue rentre dans le calcul de votre GPA.

                                Programme détaillé

                                Detailed syllabus of the course

                                (minor changes may apply during course evolution.)

                                 

                                General Introduction to Machine Learning
                                - Machine Learning paradigms
                                - The Machine Learning Pipeline

                                Supervised Learning
                                - Generative and non generative methods
                                - Naive Bayes, KNN and regressions
                                - Tree based methods

                                Unsupervised Learning
                                - Dimensionality reduction
                                - Clustering 

                                Advanced Machine Learning Concepts
                                - Regularization
                                - Model selection
                                - Feature selection
                                - Ensemble Methods

                                Kernels
                                - Introduction to kernels
                                - Support Vector Machines

                                Neural Networks
                                - Introduction to Neural Networks
                                - Perceptrons and back-propagation

                                Deep Learning I
                                - Convolutional Neural Networks
                                - Recurrent Neural Networks
                                - Applications

                                Deep Learning II
                                - Modern Natural Language Processing
                                - Unsupervised Deep Learning
                                - Embeddings, Auto-Encoders, Generative Adversarial Networks

                                Reinforcement Learning

                                Veuillez patienter