v2.11.0 (6317)

Programme d'approfondissement - CSC_51054_EP : Apprentissage profond

Domaine > Mathématiques appliquées, Informatique.

Descriptif

Nous sommes entrés dans l’ère du Big Data, où l’explosion des données dans des domaines variés – des sciences et de l’ingénierie à la santé, la finance ou encore les sciences sociales – soulève des défis inédits mais aussi d’immenses opportunités. L’un des enjeux majeurs consiste à exploiter cette masse d’informations pour extraire des connaissances utiles et concevoir des services intelligents. Dans ce contexte, l’apprentissage profond s’impose comme un paradigme révolutionnaire, capable de modéliser des structures complexes et d’apprendre des représentations riches directement à partir des données brutes. S’appuyant sur des architectures avancées – telles que les réseaux convolutifs, les Transformers et les modèles préentraînés à grande échelle – le Deep Learning permet des avancées majeures dans des domaines comme la vision par ordinateur, le traitement du langage naturel, la génération de données, la bio-informatique ou encore l’apprentissage sur graphes. Ce cours explore les fondements théoriques et techniques de l’apprentissage profond ainsi que ses applications concrètes pour résoudre des problèmes complexes à grande échelle.

36 heures en présentiel

effectifs minimal / maximal:

/156

Diplôme(s) concerné(s)

Parcours de rattachement

Format des notes

Numérique sur 20

Littérale/grade américain

Pour les étudiants du diplôme MScT-Cybersecurity (CyS)

L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 4 ECTS

Pour les étudiants du diplôme M1 PHYS - Physique

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 HEP - Physique des Hautes Energies

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme AUDITEURS - IP Paris

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 Mech - Mécanique

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 3 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 IGD - Interaction, graphisme et design

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M2 IGD - Interaction, graphisme et design

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 DataAI - Données et intelligence artificielle

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M2 DataAI - Données et intelligence artificielle

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M2 EN - Énergie

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 Cyber - Cybersecurité

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M2 Cyber - Cybersecurité

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme MScT-Visual Computing and Creative AI

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 4.5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme MScT-Trust and Responsible AI

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 4.5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Non Diplomant

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M2 CPS - Système Cyber Physique

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme MScT-Artificial Intelligence and Advanced Visual Computing

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Programmes d'échange internationaux

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme Titre d’Ingénieur diplômé de l’École polytechnique

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme MSc X-HEC Entrepreneurs

Le rattrapage est autorisé (Max entre les deux notes)
  • le rattrapage est obligatoire si :
    Note initiale < 10
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 10
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Pour les étudiants du diplôme M1 MPRI - Fondements de l'Informatique

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

Pour les étudiants du diplôme M1 CPS - Système Cyber Physique

Le rattrapage est autorisé (Note de rattrapage conservée)
  • le rattrapage est obligatoire si :
    Note initiale < 7
  • le rattrapage peut être demandé par l'étudiant si :
    Note initiale < 7
L'UE est acquise si Note finale >= 10
  • Crédits ECTS acquis : 5 ECTS

La note obtenue rentre dans le calcul de votre GPA.

Programme détaillé

Programme détaillé du cours :
(des changements mineurs peuvent se produire pendant le déroulement du cours)

 

Introduction générale à l'apprentissage machine

  • Paradigmes d'apprentissage machine
  • Pipelines d'apprentissage machine

Apprentissage supervisé

  • Méthodes génératives et non génératives
  • Classification naïve bayésienne
  • Méthode basée sur l'utilisation d'un arbre de décision

Apprentissage non supervisé

  • Réduction dimensionnelle
  • Regroupement

Concepts avancés d'apprentissage machine

  • Régularisation
  • Sélection de modèles
  • Sélection de caractéristiques
  • Méthodes d'ensemble

Kernels

  • Introduction aux kernels
  • Machines à vecteurs de support

Réseaux de neurones

  • Introduction aux réseaux de neurones
  • Perceptrons et rétropropagation du gradient

Apprentissage profond I

  • Réseaux de neurones conventionnels
  • Réseaux de neurones récurrents
  • Applications

Apprentissage profond II

  • Traitement automatique des langues moderne
  • Apprentissage profond non supervisé
  • Intégrations, auto-encodeurs, réseaux antagonistes génératifs

Apprentissage par renforcement

Mots clés

apprentissage machine, apprentissage profond, intelligence artificielle, réseau de neurones graphiques
Veuillez patienter